Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons carbon skeletons

In chemistry, if you take a simple hydrocarbon (carbon skeleton with only hydrogens attached) and replace one of the Hs with an —OH, a hydroxyl group, you have an alcohol. In Chemistry VI we met two simple ones methanol and ethanol. We have also met carboxylic acids, compounds with a —COOH group, in Chemistry III. [Pg.120]

Structural Complexity of Organic Molecules Chemical Diversity of Organic Molecules The Structures and Classes of Hydrocarbons Carbon Skeletons and Hydrogen Skins Alkanes... [Pg.459]

The mechanism of the reaction la not known with certainty. It is known from studies utilising as tracer that no change in the carbon skeleton occurs during the reaction, and also that unsaturated hydrocarbons can undergo reactions very similar to those of ketones thus both styiene and phenyl-acetylene can react with sulphur and morpholine to produce phenylaceto-thiomorphoUde, hydrolysis of which yields phenylacetic acid ... [Pg.924]

Steric Factors. Initially, most of the coUisions of fluorine molecules with saturated or aromatic hydrocarbons occur at a hydrogen site or at a TT-bond (unsaturated) site. When coUision occurs at the TT-bond, the double bond disappears but the single bond remains because the energy released in initiation (eq. 4) is insufficient to fracture the carbon—carbon single bond. Once carbon—fluorine bonds have begun to form on the carbon skeleton of either an unsaturated or alkane system, the carbon skeleton is somewhat stericaUy protected by the sheath of fluorine atoms. Figure 2, which shows the crowded hehcal arrangement of fluorine around the carbon backbone of polytetrafluoroethylene (PTFE), is an example of an extreme case of steric protection of carbon—carbon bonds (29). [Pg.275]

The nonbonding electron clouds of the attached fluorine atoms tend to repel the oncoming fluorine molecules as they approach the carbon skeleton. This reduces the number of effective coUisions, making it possible to increase the total number of coUisions and stiU not accelerate the reaction rate as the reaction proceeds toward completion. This protective sheath of fluorine atoms provides the inertness of Teflon and other fluorocarbons. It also explains the fact that greater success in direct fluorination processes has been reported when the hydrocarbon to be fluorinated had already been partiaUy fluorinated by some other process or was prechlorinated, ie, the protective sheath of halogens reduced the number of reactive coUisions and aUowed reactions to occur without excessive cleavage of carbon—carbon bonds or mnaway exothermic processes. [Pg.275]

Effect of Pressure. The effect of pressure in VPO has not been extensively studied but is informative. The NTC region and cool flame phenomena are associated with low pressures, usually not far from atmospheric. As pressure is increased, the production of olefins is suppressed and the NTC region disappears (96,97). The reaction rate also increases significantly and, therefore, essentially complete oxygen conversion can be attained at lower temperatures. The product distribution shifts toward oxygenated materials that retain the carbon skeleton of the parent hydrocarbon. [Pg.340]

For aromatic hydrocarbon molecules, in particular, the main acceptor modes are strongly anharmonic C-H vibrations which pick up the main part of the electronic energy in ST conversion. Inactive modes are stretching and bending vibrations of the carbon skeleton. The value of Pf provided by these intramolecular vibrations is so large that they act practically as a continuous bath even without intermolecular vibrations. This is confirmed by the similarity of RLT rates for isolated molecules and the same molecules imbedded in crystals. [Pg.28]

Steroids are plant and animal lipids with a characteristic tetracyclic carbon skeleton. Like the eicosanoids, steroids occur widely in body tissues and have a large variety of physiological activities. Steroids are closely related to terpenoids and arise biosynthetically from the triterpene lanosterol. Lanosterol, in turn, arises from cationic cyclization of the acyclic hydrocarbon squalene. [Pg.1091]

In fluorosulfonic acid the anodic oxidation of cyclohexane in the presence of different acids (RCO2H) leads to a single product with a rearranged carbon skeleton, a 1-acyl-2-methyl-1-cyclopentene (1) in 50 to 60% yield (Eq. 2) [7, 8]. Also other alkanes have been converted at a smooth platinum anode into the corresponding a,-unsaturated ketones in 42 to 71% yield (Table 1) [8, 9]. Product formation is proposed to occur by oxidation of the hydrocarbon to a carbocation (Eq. 1 and Scheme 1) that rearranges and gets deprotonated to an alkene, which subsequently reacts with an acylium cation from the carboxylic acid to afford the a-unsaturated ketone (1) (Eq. 2) [8-10]. In the absence of acetic acid, for example, in fluorosulfonic acid/sodium... [Pg.128]

The Clemmensen reduction of j8-diketones (1,3-diketones) is rather complicated. The first step in the reaction of 2,4-pentanedione with zinc amalgam is an intramolecular pinacol reduction leading to a cyclopropanediol. Next the cyclopropane ring is opened in the acidic medium, and a rearrangement followed by a reduction gives the final product, a ketone, with a changed carbon skeleton [924, 925]. The ketone is usually accompanied by small amounts of the corresponding hydrocarbon [924] or an a-hydroxy ketone [925]. [Pg.127]

The polyketides are a large family of bio synthetically related NPs, some of which have very great pharmaceutical value (polyketide sales total about 10 billion annually, see also Chapter 7). Some antibiotics (erythromycin, monensin, rifamycin), immunosuppressants (rapamycin), antifungal substances (amphotericin), antiparasitic (aver-mectin) and anticancer drugs (doxorubicin) are polyketides. The term polyketide refers to the fact that the basic carbon skeleton is not a simple hydrocarbon chain as in the case of fatty acids but is a series of linked keto groups in sequence (Figure 3.6). The first phase of this pathway, the generation of carbon skeleton diversification. [Pg.68]

Reduction of ketones to hydrocarbons has been used to elucidate the carbon skeleton of the ketone mol-... [Pg.15]

The multiple cleavage modes in ketones sometimes make difficult the determination of the carbon chain configuration. Reduction of the carbonyl group to a methylene group yields the corresponding hydrocarbon whose fragmentation pattern leads to the carbon skeleton. [Pg.23]

In simple conjugated hydrocarbons, carbon utilizes sp2 hybrid orbitals to form a-bonds and the pure px orbital to give the it-MOs. Since the c-skeleton of the hydrocarbon is perpendicular to the wave functions of it-MO, only px AOs need be considered for the formation of it-MOs of interest for photochemists. Let us consider the case of butadiene with px AO contributed by 4 carbon atoms. The possible combinations are given in Figure 2.18. The energy increases with the number of nodes so that Et < < E3 < Et. [Pg.41]

Let us start out by a few comments about the terms used to describe carbon skeletons encountered in organic molecules. When considering a hydrocarbon (i.e., a compound consisting of only C and H) or a hydrocarbon group (i.e., a hydrocarbon substituent) in a molecule, the only possible functionalities are carbon-carbon double and triple bonds. A carbon skeleton is said to be saturated if it has no double or triple bond, and unsaturated if there is at least one such bond present. Hence, in a hydrocarbon, the term saturated indicates that the carbon skeleton contains the maximum number of hydrogen atoms compatible with the requirement that carbon always forms four bonds and hydrogen one. A saturated carbon atom is one that is singly bound to four other separate atoms. [Pg.32]


See other pages where Hydrocarbons carbon skeletons is mentioned: [Pg.329]    [Pg.469]    [Pg.275]    [Pg.282]    [Pg.408]    [Pg.330]    [Pg.250]    [Pg.50]    [Pg.453]    [Pg.101]    [Pg.1]    [Pg.33]    [Pg.124]    [Pg.10]    [Pg.36]    [Pg.169]    [Pg.68]    [Pg.38]    [Pg.370]    [Pg.546]    [Pg.101]    [Pg.29]    [Pg.35]    [Pg.77]    [Pg.300]    [Pg.393]    [Pg.265]    [Pg.61]    [Pg.65]    [Pg.68]    [Pg.365]    [Pg.408]    [Pg.372]    [Pg.268]    [Pg.32]   
See also in sourсe #XX -- [ Pg.462 , Pg.463 ]




SEARCH



Carbonate skeletons

© 2024 chempedia.info