Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons anodic processes

Fluorocarbons are made commercially also by the electrolysis of hydrocarbons in anhydrous hydrogen fluoride (Simons process) (14). Nickel anodes and nickel or steel cathodes are used. Special porous anodes improve the yields. This method is limited to starting materials that are appreciably soluble in hydrogen fluoride, and is most useflil for manufacturing perfluoroalkyl carboxyflc and sulfonic acids, and tertiary amines. For volatile materials with tittle solubility in hydrofluoric acid, a complementary method that uses porous carbon anodes and HF 2KF electrolyte (Phillips process) is useflil (14). [Pg.283]

The scope of oxidation chemistry is enormous and embraces a wide range of reactions and processes. This article provides a brief introduction to the homogeneous free-radical oxidations of paraffinic and alkylaromatic hydrocarbons. Heterogeneous catalysis, biochemical and hiomimetic oxidations, oxidations of unsaturates, anodic oxidations, etc, even if used to illustrate specific points, are arbitrarily outside the purview of this article. There are, even so, many unifying features among these areas. [Pg.334]

Compared with XPS and AES, the higher surface specificity of SSIMS (1-2 mono-layers compared with 2-8 monolayers) can be useful for more precise determination of the chemistry of an outer surface. Although from details of the 01s spectrum, XPS could give the information that OH and oxide were present on a surface, and from the Cls spectrum that hydrocarbons and carbides were present, only SSIMS could be used to identify the particular hydroxide or hydrocarbons. In the growth of oxide films for different purposes (e.g. passivation or anodization), such information is valuable, because it provides a guide to the quality of the film and the nature of the growth process. [Pg.96]

Faraday, in 1834, was the first to encounter Kolbe-electrolysis, when he studied the electrolysis of an aqueous acetate solution [1], However, it was Kolbe, in 1849, who recognized the reaction and applied it to the synthesis of a number of hydrocarbons [2]. Thereby the name of the reaction originated. Later on Wurtz demonstrated that unsymmetrical coupling products could be prepared by coelectrolysis of two different alkanoates [3]. Difficulties in the coupling of dicarboxylic acids were overcome by Crum-Brown and Walker, when they electrolysed the half esters of the diacids instead [4]. This way a simple route to useful long chain l,n-dicarboxylic acids was developed. In some cases the Kolbe dimerization failed and alkenes, alcohols or esters became the main products. The formation of alcohols by anodic oxidation of carboxylates in water was called the Hofer-Moest reaction [5]. Further applications and limitations were afterwards foimd by Fichter [6]. Weedon extensively applied the Kolbe reaction to the synthesis of rare fatty acids and similar natural products [7]. Later on key features of the mechanism were worked out by Eberson [8] and Utley [9] from the point of view of organic chemists and by Conway [10] from the point of view of a physical chemist. In Germany [11], Russia [12], and Japan [13] Kolbe electrolysis of adipic halfesters has been scaled up to a technical process. [Pg.92]

Fuel cells are electrochemical devices transforming the heat of combustion of a fuel (hydrogen, natural gas, methanol, ethanol, hydrocarbons, etc.) directly into electricity. The fuel is electrochemically oxidized at the anode, whereas the oxidant (oxygen from the air) is reduced at the cathode. This process does not follow Carnot s theorem, so that higher energy efficiencies are expected up to 40-50% in electrical energy and 80-85% in total energy (heat production in addition to electricity). [Pg.343]

M. Faraday was the first to observe an electrocatalytic process, in 1834, when he discovered that a new compound, ethane, is formed in the electrolysis of alkali metal acetates (this is probably the first example of electrochemical synthesis). This process was later named the Kolbe reaction, as Kolbe discovered in 1849 that this is a general phenomenon for fatty acids (except for formic acid) and their salts at higher concentrations. If these electrolytes are electrolysed with a platinum or irridium anode, oxygen evolution ceases in the potential interval between +2.1 and +2.2 V and a hydrocarbon is formed according to the equation... [Pg.398]

As stated, one of the fundamental problems encountered in the direct oxidation of hydrocarbon fuels in SOFCs is carbon deposition on the anode, which quickly deactivates the anode and degrades cell performance. The possible buildup of carbon can lead to failure of the fuel-cell operation. Applying excess steam or oxidant reagents to regenerate anode materials would incur significant cost to SOFC operation. The development of carbon tolerant anode materials was summarized very well in several previous reviews and are not repeated here [7-9], In this section, the focus will be on theoretical studies directed toward understanding the carbon deposition processes in the gas-surface interfacial reactions, which is critical to the... [Pg.115]

FIGURE 6.11 Diagram of the processing technique used to prepare Cu-Ce02-YSZ anodes for direct oxidation of hydrocarbon fuels by preparing a porous preform of YSZ and then infiltrating it with cerium nitrates to form ceria and then with copper nitrates to form metallic copper [84]. Reprinted from [84] with permission from Elsevier. [Pg.262]

Under normal operation of an H2/O2 fuel cell, anodic oxidation of IT2 (or other hydrocarbons or alcoholic fuels)—that is, H2 —> 2H+ -1- 2e —produces protons that move through the polymer electrolyte membrane (PEM) to the cathode, where reduction of O2 (i.e., O2 -1- 2H+ -1- 2e —> H2O) produces water. The overall redox process is H2 -1-O2 —> H2O. The electronically insulating PEM forces electrons produced at the anode through an external electric circuit to the cathode to perform work in stationary power units, drive trains... [Pg.344]

It has been argued that all steps in the reaction must be electrochemical in nature for the process to be called direct oxidation. According to this definition, any process that involves cracking of the hydrocarbon on the anode material, followed by electrochemical oxidation of the cracking products, should not be considered to be direct oxidation. The primary reason for using this narrow definition for direct oxidation is that the open-circuit voltage (OCV) of the cell will be equal to the theoretical, Nernst potential if there are no other losses and if all steps in the oxidation mechanism are electrochemical. [Pg.607]

Anodic oxidation in inert solvents is the most widespread method of cation-radical preparation, with the aim of investigating their stability and electron structure. However, saturated hydrocarbons cannot be oxidized in an accessible potential region. There is one exception for molecules with the weakened C—H bond, but this does not pertain to the cation-radical problem. Anodic oxidation of unsaturated hydrocarbons proceeds more easily. As usual, this oxidation is assumed to be a process including one-electron detachment from the n system with the cation-radical formation. This is the very first step of this oxidation. Certainly, the cation-radical formed is not inevitably stable. Under anodic reaction conditions, it can expel the second electron and give rise to a dication or lose a proton and form a neutral (free) radical. The latter can be either stable or complete its life at the expense of dimerization, fragmentation, etc. Nevertheless, electrochemical oxidation of aromatic hydrocarbons leads to cation-radicals, the nature of which is reliably established (Mann and Barnes 1970 Chapter 3). [Pg.90]

Anodic substitution reactions of aromatic hydrocarbons have been known since around 1900 [29, 30]. The course of these processes was established primarily by a study of the reaction between naphthalene and acetate ions. Oxidation of naphthalene in the presence of acetate gives 1-acetoxynaphthalene and this was at first taken to indicate trapping of the acetyl radical formed during Kolbe electrolysis of... [Pg.192]


See other pages where Hydrocarbons anodic processes is mentioned: [Pg.97]    [Pg.375]    [Pg.191]    [Pg.326]    [Pg.220]    [Pg.221]    [Pg.298]    [Pg.212]    [Pg.895]    [Pg.1999]    [Pg.36]    [Pg.169]    [Pg.155]    [Pg.390]    [Pg.81]    [Pg.101]    [Pg.102]    [Pg.2413]    [Pg.281]    [Pg.983]    [Pg.152]    [Pg.711]    [Pg.926]    [Pg.74]    [Pg.243]    [Pg.262]    [Pg.274]    [Pg.289]    [Pg.402]    [Pg.80]    [Pg.83]    [Pg.49]    [Pg.546]    [Pg.95]    [Pg.193]    [Pg.197]    [Pg.4]    [Pg.123]   
See also in sourсe #XX -- [ Pg.115 , Pg.116 ]




SEARCH



Anode process, 1.20

Anodic processes

Anodization process

© 2024 chempedia.info