Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon Solvents, Determination

ISO 2977-97. Petroleum products and hydrocarbon solvents - Determination of aniline point and mixed aniline point. [Pg.1075]

The ultraviolet absorption spectrum of thiazole was first determined in 1955 in ethanolic solution by Leandri et al. (172), then in 1957 by Sheinker et al. (173), and in 1967 by Coltbourne et al. (174). Albert in 1957 gave the spectrum in aqueous solution at pH 5 and in acidic solution (NHCl) (175). Nonhydroxylic solvents were employed (176, 177), and the vapor-phase spectrum was also determined (123). The results summarized in Table 1-15 are homogeneous except for the first data of Leandri (172). Both bands A and B have a red shift of about 3 nm when thiazole is dissolved in hydrocarbon solvents. This red shift of band A increases when the solvent is hydroxylic and, in the case of water, especially when the solution becomes acidic and the extinction coefficient increases simultaneously. [Pg.47]

Polymer Synthesis and Characterization. This topic has been extensively discussed in preceeding papers.(2,23,24) However, we will briefly outline the preparative route. The block copolymers were synthesized via the sequential addition method. "Living" anionic polymerization of butadiene, followed by isoprene and more butadiene, was conducted using sec-butyl lithium as the initiator in hydrocarbon solvents under high vacuum. Under these conditions, the mode of addition of butadiene is predominantly 1,4, with between 5-8 mole percent of 1,2 structure.(18) Exhaustive hydrogenation of polymers were carried out in the presence of p-toluenesulfonylhydrazide (19,25) in refluxing xylene. The relative block composition of the polymers were determined via NMR. [Pg.122]

As documented in detail for organolithium species, ligand and donor play a key role in determining the degree of aggregation. Methyllithium adopts a hexameric structure in hydrocarbon solvents.13,15 In the presence of monodentate, donors such as THF or diethyl ether tetramers are observed, while the increase in donor denticity to 2 (1,1-Dimethoxyethane (DME), N,N,N, N -Tetramethylethylenediamine (TMEDA)) affords monomeric structures. Further documenting the differences between solution and solid states, [CH3Li]4 adopts a tetrameric structure in the latter.15,15a-15c... [Pg.2]

Watts JO, Holswade W. 1967. Gas chromatographic determination of residual hydrocarbon solvents in solvent-extracted edible oils. J AOAC 50(3) 718-726. [Pg.249]

The same type of addition—as shown by X-ray analysis—occurs in the cationic polymerization of alkenyl ethers R—CH=CH—OR and of 8-chlorovinyl ethers (395). However, NMR analysis showed the presence of some configurational disorder (396). The stereochemistry of acrylate polymerization, determined by the use of deuterated monomers, was found to be strongly dependent on the reaction environment and, in particular, on the solvation of the growing-chain-catalyst system at both the a and jS carbon atoms (390, 397-399). Non-solvated contact ion pairs such as those existing in the presence of lithium catalysts in toluene at low temperature, are responsible for the formation of threo isotactic sequences from cis monomers and, therefore, involve a trans addition in contrast, solvent separated ion pairs (fluorenyllithium in THF) give rise to a predominantly syndiotactic polymer. Finally, in mixed ether-hydrocarbon solvents where there are probably peripherally solvated ion pairs, a predominantly isotactic polymer with nonconstant stereochemistry in the jS position is obtained. It seems evident fiom this complexity of situations that the micro-tacticity of anionic poly(methyl methacrylate) cannot be interpreted by a simple Bernoulli distribution, as has already been discussed in Sect. III-A. [Pg.89]

Phenan thro line (182) can be used instead of thiocyanate to form a complex with Fe(III) ions resulting from the oxidation of Fe(II), and the measurement is made at 500 to 510 nm. The use of 182 has the advantage of stability in the presence of air and also of allowing the use of hydrocarbon solvents for increased solubility of certain analytes. The method was applied for determination of hydroperoxides in natural rubber and synthetic elastomers, in the range of 10 to 20 ppm active oxygen. The sensitivity can be improved to less than 1 ppm, depending on the color of the sample solution. ... [Pg.676]

It will be seen that there is an almost equal distribution of the charge between a and Y positions in THF for the heavier alkali metal counter-ions. If we suppose that increased charge produces an increased reactivity at a given position, then more vinyl unsaturation will be produced in THF than in hydrocarbon solvents and the highest vinyl content with heavier alkali metal counterions. The order in THF is however reversed, i.e. the highest, vinyl structures are produced by lithium catalysis (17) although microstructure determinations in this solvent normally apply to reactions with an appreciable free anion contribution and hence cannot be simply interpreted. In dioxane (18) and diethylether... [Pg.75]

Our study concerns the polymerization of 2-VP, Initiated by organomagneslum derivatives of the type R Mg R, In hydrocarbon solvents. In order to obtain a detailed knowledge of the stereoregulating mechanism, we focused this study on the determination of the nature and of the structure of active centers. [Pg.239]

The quantum yields and decay rates of the intermolecular excimer of naphthalene and its derivatives are given in Table 8. The solvent ethanol water 95 5 v/v is one of the few solvents in which the fluorescence of these compounds has been completely characterized. Examination of the values of kD and QM for other solvents shows that 95 % EtOH does not belong in the same class as the hydrocarbon solvents, or even anhydrous ethahol. In the latter solvents, kD/kM falls between 0.8 for 1,6-dimethylnaphthalene and 1.4 for naphthalene. Although the quantity k /k has been measured only once for a naphthyl compound in a hydrocarbon solvent (see Table 5), the values 0.3 and 0.4 seem appropriate for 1,6-dimethylnaphthalene and naphthalene, respectively, in hydrocarbon solvents. Since QD/QM = (kpD/kpM) -s-(kD/kM), we obtain QD/QM = 0.4 for 1,6-dimethylnaphthalene and 0.3 for naphthalene. The intrinsic quantum yield ratio as determined in 95 % EtOH solvent is about seven... [Pg.63]

The lifetimes of the BRs are of critical importance to any attempt at quantitative analysis of the factors which will determine quantum yields and product distributions (E/C and t/c ratios) in Type II reactions of ketones under various reaction conditions. Virtually all information about lifetimes is derived from study of triplet BRs and much of it has been provided, and reviewed, by Scaiano [261]. There are many interesting reactions, both bimolecular and unimolecular, which occur at only one of the radical centers but they have little relevance to this chapter and are not discussed here. BR triplets derived from alkanophenones have lifetimes of 25-50 ns in hydrocarbon solvents. They are lengthened several fold in t-butyl alcohol and other Lewis bases capable of hydrogen bonding to the OH groups of the BRs. The rates of decay are virtually temperature independent but are shortened by paramagnetic cosolutes such as 02 or NO. The quenchers react with the BRs... [Pg.168]


See other pages where Hydrocarbon Solvents, Determination is mentioned: [Pg.676]    [Pg.676]    [Pg.674]    [Pg.151]    [Pg.153]    [Pg.126]    [Pg.127]    [Pg.631]    [Pg.113]    [Pg.41]    [Pg.86]    [Pg.83]    [Pg.108]    [Pg.147]    [Pg.172]    [Pg.431]    [Pg.148]    [Pg.63]    [Pg.324]    [Pg.337]    [Pg.271]    [Pg.283]    [Pg.18]    [Pg.256]    [Pg.196]    [Pg.204]    [Pg.72]    [Pg.73]    [Pg.676]    [Pg.676]    [Pg.180]    [Pg.64]    [Pg.19]    [Pg.174]    [Pg.90]    [Pg.361]    [Pg.48]   


SEARCH



Hydrocarbon Solvents, Determination Benzenes

Hydrocarbon solvents

Hydrocarbons determination

Solvents chlorinated hydrocarbons, determination

Solvents, determination

© 2024 chempedia.info