Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride transfer studies

Although the alkylation of paraffins can be carried out thermally (3), catalytic alkylation is the basis of all processes in commercial use. Early studies of catalytic alkylation led to the formulation of a proposed mechanism based on a chain of ionic reactions (4—6). The reaction steps include the formation of a light tertiary cation, the addition of the cation to an olefin to form a heavier cation, and the production of a heavier paraffin (alkylate) by a hydride transfer from a light isoparaffin. This last step generates another light tertiary cation to continue the chain. [Pg.45]

It is known that tropylium may be prepared from tropylidene via hydride abstraction by PhgC or MegC carbonium ions therefore, it is very likely that here too the dehydrogenation is a hydride transfer from the 1,5-dione to an acceptor. A similar dehydrogenation of chromanones to chromones, with triphenylmethyl perchlorate was reported. A study of the electrooxidation of 1,5-diones on a rotating platinum electrode showed that 1,5-diaryl-substituted diones afford pyrylium salts in these conditions and that the half-wave potentials correlate with yields in chemical dehydrogenations. [Pg.280]

As a result of the conclusions reached in these studies, a simple competition method was devised 12, 32) to determine relative rates of hydride transfer reactions rather accurately. For example, to obtain relative reaction rates of ethyl ions with various additives, a suitable source of fully deuterated ethyl ions such as C3D8 or iso-C4Di0 was irradiated in the presence of a perprotonated additive (RH), leading to the formation of C2D6 and C2D5H by Reactions 2 and 3. [Pg.272]

In the same study, several ligands variously functional on both the nitrogen and the sulfur atoms have been developed, providing a new class of cyclo-hexylamino sulfide ligands derived from cyclohexene oxide. All the ligands depicted in Scheme 9.7 were evaluated for the Ir-catalysed hydride-transfer reduction of acetophenone in the presence of i-PrOH as the hydrogen donor, providing enantioselectivities of up to 70% ee. [Pg.273]

Another milestone discovery in the held of silyl cations chemistry was achieved by Reed and co-workers in the same year, 1993, when Lambert published his Et3Si study. Reed synthesized his t-PrjSi (CBuHsBrg), (2+ (CBnH5Br5), by the hydride transfer reaction of /-PrjSiH and Ph3C (CBnH6Br6) in toluene,taking advantage of the very low nucleophilicity of the carborane anion" (Scheme 2.9). [Pg.56]

Figure 5-3. Active site and calculated PES properties for the reactions studied, with the transferring hydrogen labelled as Hp (a) hydride transfer in LADH, (b) proton transfer in MADH and (c) hydrogen atom transfer in SLO-1. (i) potential energy, (ii) vibrationally adiabatic potential energy, (iii) RTE at 300K and (iv) total reaction path curvature. Reproduced with permission from reference [81]. Copyright Elsevier 2002... Figure 5-3. Active site and calculated PES properties for the reactions studied, with the transferring hydrogen labelled as Hp (a) hydride transfer in LADH, (b) proton transfer in MADH and (c) hydrogen atom transfer in SLO-1. (i) potential energy, (ii) vibrationally adiabatic potential energy, (iii) RTE at 300K and (iv) total reaction path curvature. Reproduced with permission from reference [81]. Copyright Elsevier 2002...
A number of mechanistic pathways have been identified for the oxidation, such as O-atom transfer to sulfides, electrophilic attack on phenols, hydride transfer from alcohols, and proton-coupled electron transfer from hydroquinone. Some kinetic studies indicate that the rate-determining step involves preassociation of the substrate with the catalyst.507,508 The electrocatalytic properties of polypyridyl oxo-ruthenium complexes have been also applied with success to DNA cleavage509,5 and sugar oxidation.511... [Pg.499]

The rate also varies with butadiene concentration. However, the order of the rate dependence on butadiene concentration is temperature-de-pendent, i.e., a fractional order (0.34) at 30°C and first-order at 50°C (Tables II and III). Cramer s (4, 7) explanation for this temperature effect on the kinetics is that, at 50°C, the insertion reaction to form 4 from 3, although still slow, is no longer rate-determining. Rather, the rate-determining step is the conversion of the hexyl species in 4 into 1,4-hexadiene or the release of hexadiene from the catalyst complex. This interaction involves a hydride transfer from the hexyl ligand to a coordinated butadiene. This transfer should be fast, as indicated by some earlier studies of Rh-catalyzed olefin isomerization reactions (8). The slow release of the hexadiene is therefore attributed to the low concentration of butadiene. Thus, Scheme 2 can be expanded to include complex 6, as shown in Scheme 3. The rate of release of hexadiene depends on the concentra-... [Pg.274]

The kinetics of the ionic hydrogenation of isobutyraldehyde were studied using [CpMo(CO)3H] as the hydride and CF3C02H as the acid [41]. The apparent rate decreases as the reaction proceeds, since the acid is consumed. However, when the acidity is held constant by a buffered solution in the presence of excess metal hydride, the reaction is first-order in acid. The reaction is also first-order in metal hydride concentration. A mechanism consistent with these kinetics results is shown in Scheme 7.8. Pre-equilibrium protonation of the aldehyde is followed by rate-determining hydride transfer. [Pg.171]

Hydride transfer reactions from [Cp2MoH2] were discussed above in studies by Ito et al. [38], where this molybdenum dihydride was used in conjunction with acids for stoichiometric ionic hydrogenations of ketones. Tyler and coworkers have extensively developed the chemistry of related molybdenocene complexes in aqueous solution [52-54]. The dimeric bis-hydroxide bridged dication dissolves in water to produce the monomeric complex shown in Eq. (32) [53]. In D20 solution at 80 °C, this bimetallic complex catalyzes the H/D exchange of the a-protons of alcohols such as benzyl alcohol and ethanol [52, 54]. [Pg.177]

The mechanism of the Meerwein-Pondorf-Verley reaction is by coordination of a Lewis acid to isopropanol and the substrate ketone, followed by intermolecular hydride transfer, by beta elimination [41]. Initially, the mechanism of catalytic asymmetric transfer hydrogenation was thought to follow a similar course. Indeed, Backvall et al. have proposed this with the Shvo catalyst [42], though Casey et al. found evidence for a non-metal-activation of the carbonyl (i.e., concerted proton and hydride transfer [43]). This follows a similar mechanism to that proposed by Noyori [44] and Andersson [45], for the ruthenium arene-based catalysts. By the use of deuterium-labeling studies, Backvall has shown that different catalysts seem to be involved in different reaction mechanisms [46]. [Pg.1223]


See other pages where Hydride transfer studies is mentioned: [Pg.4]    [Pg.4]    [Pg.45]    [Pg.68]    [Pg.257]    [Pg.133]    [Pg.74]    [Pg.272]    [Pg.270]    [Pg.278]    [Pg.407]    [Pg.68]    [Pg.242]    [Pg.117]    [Pg.149]    [Pg.26]    [Pg.238]    [Pg.85]    [Pg.89]    [Pg.149]    [Pg.128]    [Pg.334]    [Pg.170]    [Pg.155]    [Pg.158]    [Pg.160]    [Pg.160]    [Pg.163]    [Pg.164]    [Pg.175]    [Pg.175]    [Pg.178]    [Pg.180]    [Pg.181]    [Pg.181]    [Pg.185]    [Pg.189]    [Pg.192]    [Pg.471]    [Pg.265]    [Pg.265]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Hydride transfer

© 2024 chempedia.info