Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride intramolecular

Key steps, as shown in Scheme 4-15, involve the formation of a urethane intermediate 37 by treating epoxide 36 with methyl isocyanate in the presence of sodium hydride. Intramolecular A-nucleophilic ring opening of oxirane affords oxazolidine 38. Subsequent treatment furnishes product 34. [Pg.209]

The reducing agent could attack either side of the ring in the first step but by reacting with the OH group it can deliver hydride intramolecularly from the bottom face. The mesylation does not affect the stereochemistry as no bonds are formed or broken at any of the stereogenic centres. [Pg.351]

In principle, the direct hydride addition or catalytic hydrogenation, which did not give chlorins, was replaced by an electrocyclic intramolecular addition which is much easier with the above system. Complete regioselectivity was also achieved since electrocyclization did not occur with the resonance-stabilized ring C. [Pg.259]

Dimethyl iodo(4-pentenyl)malonate (926) undergoes a Pd-catalyzed intramolecular radical-type reaction to form the alkyl iodides 927 and 928. rather than a Heck-type reaction product(775]. The same products are also obtained by a radical reaction promoted by tin hydride(776]. Although yield was low, a similar cyclization of the n-chloro ester 929 to form the seven-membered ring 930 was ob,served(777(. [Pg.263]

A traditional method for such reductions involves the use of a reducing metal such as zinc or tin in acidic solution. Examples are the procedures for preparing l,2,3,4-tetrahydrocarbazole[l] or ethyl 2,3-dihydroindole-2-carbox-ylate[2] (Entry 3, Table 15.1), Reduction can also be carried out with acid-stable hydride donors such as acetoxyborane[4] or NaBHjCN in TFA[5] or HOAc[6]. Borane is an effective reductant of the indole ring when it can complex with a dialkylamino substituent in such a way that it can be delivered intramolecularly[7]. Both NaBH -HOAc and NaBHjCN-HOAc can lead to N-ethylation as well as reduction[8]. This reaction can be prevented by the use of NaBHjCN with temperature control. At 20"C only reduction occurs, but if the temperature is raised to 50°C N-ethylation occurs[9]. Silanes cun also be used as hydride donors under acidic conditions[10]. Even indoles with EW substituents, such as ethyl indole-2-carboxylate, can be reduced[ll,l2]. [Pg.145]

This is one of the few methods available for the direct and efficient conversion of an acid, via the acid chloride, to an ortho ester. The preparation of the oxetane is straightforward, and a large number of oxetanes have been prepared [triol, (EtO)2CO, KOH]." In addition, the -butyl analogue has been used for the protection of acids. During the course of a borane reduction, the ortho ester was reduced to form a ketal. This was attributed to an intramolecular delivery of the hydride. ... [Pg.438]

Reaction of 2-methoxytetrahydropyrrole with dioxalane-2,4-dione in presence of Et3N in benzene followed by treatment with MeONa in methanol afforded the monocyclic intermediate 185. Its treatment with BuLi followed by perfluorobenzoyl chloride gave 186 whose hydrolysis gave 187 which possess low or no antibacterial activity (96PHA805). Regiospecific intramolecular cyclization of 188 with sodium hydride yielded 189 as ester whose hydrolysis gave the respective acid (87JHC1537) (Scheme 35). [Pg.96]

The second part of lanosterol biosynthesis is catalyzed by oxidosqualene lanosterol cyclase and occurs as shown in Figure 27.14. Squalene is folded by the enzyme into a conformation that aligns the various double bonds for undergoing a cascade of successive intramolecular electrophilic additions, followed by a series of hydride and methyl migrations. Except for the initial epoxide protonation/cyclization, the process is probably stepwise and appears to involve discrete carbocation intermediates that are stabilized by electrostatic interactions with electron-rich aromatic amino acids in the enzyme. [Pg.1085]

The wide variety of methods available for the synthesis of orga-noselenides,36 and the observation that the carbon-selenium bond can be easily cleaved homolytically to give a carbon-centered radical creates interesting possibilities in organic synthesis. For example, Burke and coworkers have shown that phenylselenolactone 86 (see Scheme 16), produced by phenylselenolactonization of y,S-unsaturated acid 85, can be converted to free radical intermediate 87 with triphenyltin hydride. In the presence of excess methyl acrylate, 87 is trapped stereoselectively, affording compound 88 in 70% yield 37 it is noteworthy that the intramolecular carbon-carbon bond forming event takes place on the less hindered convex face of bicyclic radical 87. [Pg.397]

The intramolecular Heck reaction presented in Scheme 8 is also interesting and worthy of comment. Rawal s potentially general strategy for the stereocontrolled synthesis of the Strychnos alkaloids is predicated on the palladium-mediated intramolecular Heck reaction. In a concise synthesis of ( )-dehydrotubifoline [( )-40],22 Rawal et al. accomplished the conversion of compound 36 to the natural product under the conditions of Jeffery.23 In this ring-forming reaction, the a-alkenylpalladium(n) complex formed in the initial oxidative addition step engages the proximate cyclohexene double bond in a Heck cyclization, affording enamine 39 after syn /2-hydride elimination. The latter substance is a participant in a tautomeric equilibrium with imine ( )-40, which happens to be shifted substantially in favor of ( )-40. [Pg.574]

The hydrogeh atom bound to the amide nitrogen in 15 is rather acidic and it can be easily removed as a proton in the presence of some competent base. Naturally, such an event would afford a delocalized anion, a nucleophilic species, which could attack the proximal epoxide at position 16 in an intramolecular fashion to give the desired azabicyclo[3.2.1]octanol framework. In the event, when a solution of 15 in benzene is treated with sodium hydride at 100 °C, the processes just outlined do in fact take place and intermediate 14 is obtained after hydrolytic cleavage of the trifluoroacetyl group with potassium hydroxide. The formation of azabi-cyclo[3.2.1]octanol 14 in an overall yield of 43% from enone 16 underscores the efficiency of Overman s route to this heavily functionalized bicycle. [Pg.649]

The intramolecular Michael addition11 of a nucleophilic oxygen to an a,/ -unsaturated ester constitutes an attractive alternative strategy for the synthesis of the pyran nucleus, a strategy that could conceivably be applied to the brevetoxin problem (see Scheme 2). For example, treatment of hydroxy a,/ -unsaturated ester 9 with sodium hydride furnishes an alkoxide ion that induces ring formation by attacking the electrophilic //-carbon of the unsaturated ester moiety. This base-induced intramolecular Michael addition reaction is a reversible process, and it ultimately affords the thermodynamically most stable product 10 (92% yield). [Pg.734]

It will be recalled that one of the key operations in the synthesis of IJK ring system 86 is the intramolecular conjugate addition reaction (see 90—>89, Scheme 17b) to form ring J. In the context of compound 90, the electrophilic a,/ -unsaturated ester moiety and the potentially nucleophilic tertiary hydroxyl group reside in proximal regions of space, a circumstance that would seem to favor the desired cyclization evept (see Scheme 19). Indeed, exposure of a solution of 90 in THFto sodium hydride (1 equiv.) for one hour at 25 °C results in the formation of compound 89 in 92% yield. In... [Pg.764]


See other pages where Hydride intramolecular is mentioned: [Pg.488]    [Pg.5279]    [Pg.705]    [Pg.5278]    [Pg.238]    [Pg.528]    [Pg.488]    [Pg.5279]    [Pg.705]    [Pg.5278]    [Pg.238]    [Pg.528]    [Pg.894]    [Pg.155]    [Pg.463]    [Pg.476]    [Pg.477]    [Pg.438]    [Pg.280]    [Pg.65]    [Pg.131]    [Pg.95]    [Pg.97]    [Pg.140]    [Pg.96]    [Pg.83]    [Pg.215]    [Pg.73]    [Pg.64]    [Pg.420]    [Pg.147]    [Pg.38]    [Pg.272]    [Pg.290]    [Pg.387]    [Pg.392]    [Pg.429]    [Pg.467]    [Pg.542]    [Pg.572]    [Pg.572]    [Pg.573]    [Pg.580]    [Pg.650]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



© 2024 chempedia.info