Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Human immunodeficiency virus delavirdine

The first lead compounds for non-nucleoside reverse transcriptase (RT) inhibitors (NNRTl) were discovered about 15 years ago (Pauwels et al. 1990 Merluzzi et al. 1990 Goldman et al. 1991 De Clercq 1993 Riibsamen-Waigmann et al. 1997). Since then they have become an important ingredient of the dmg combination schemes that are currently used in the treatment of human immunodeficiency virus type 1 (HlV-1) infections. Starting from the HEPT and TIBO derivatives, numerous classes of compounds have been described as NNRTIs. Four compounds (nevirapine, delavirdine, efavirenz and etravirine) have so far been approved for clinical use and several others are the subject of clinical trials (Balzarini 2004 Stellbrink 2007). [Pg.157]

At the present time, there are at least 14 compounds that have been formally approved for the treatment of human immunodeficiency virus (HIV) infections. There are six nucleoside reverse transcriptase inhibitors (NRTIs) that, after their intracellular conversion to the 5 -triphosphate form, are able to interfere as competitive inhibitors of the normal substrates (dNTPs). These are zidovudine (AZT), didanosine (ddl), zalcitabine (ddC), stavudine (d4T), lamivudine (3TC), and abacavir (ABC). There are three nonnucleoside reverse transcriptase inhibitors (NNRTIs) — nevirapine, delavirdine, and efavirenz — that, as such, directly interact with the reverse transcriptase at a nonsubstrate binding, allosteric site. There are five HIV protease inhibitors (Pis saquinavir, ritonavir, indinavir, nelfinavir, and amprenavir) that block the cleavage of precursor to mature HIV proteins, thus impairing the infectivity of the virus particles produced in the presence of these inhibitors. [Pg.387]

Morse GD, Fischl MA, Shelton MJ, Cox SR, Driver M, DeRemer M, Freimuth WW. Single-dose pharmacokinetics of delavirdine mesylate and didanosine in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997 41(l) 169-74. [Pg.1072]

Successful treatment of human immunodeficiency virus (HIV-1) infection has been achieved through successful implementation of highly active antiretroviral therapy, frequently referred to as HAART. This involves simultaneous administration of both nucleoside and nonnucleoside reverse transcriptase inhibitors and one or more protease inliibitors. The common nucleoside reverse transcriptase inhibitors are the thymidine analogs didanosine (ddl), lamivudine (3TC), and zalcitabine (ddC) and the non-thymidine analogs abacavir (Ziazen), stavudine (d4T), and zidovudine (AZT). The nonnucleoside reverse transcriptase inhibitors include delavirdine, efavirenz, and nevirapine. The protease inhibitors include indinavir, nelfinavir, ritonavir, and saquinavir. Response to therapy is monitored by quantification of HIV-RNA copies (viral load) and CD-4+ T-lymphocyte count. Successful therapy is indicated when viral load is reduced to <50 copies/mL and CD-4+ count >500 per mL. [Pg.1269]

Bsteady-state harmacokinetics of delavirdine in human immunodeficiency virus-positive patients Antimicrob Agents Chemodier ( 99T) 41,1892-7. [Pg.782]

Shelton MJ, Hewitt RG, Adams J, Della-Coletta A, Cox S, Morse GD. Pharmacokinetics of ritonavir and delavirdine in human immunodeficiency virus-infected patients. Antimicrob Agents Cbemotber (2003) 47, 1694-9. [Pg.788]

Simon, VA. Thiam, M.D. Lipford, L.C. Determination of serum levels of thirteen human immunodeficiency virus-suppressing drugs by high-performance hquid chromatography, J.ChromatogrA, 2001,913,447-453. [zalcitabine lamivudine stavudine didanosine zidovudine nevirapine abacavir indinavir delavirdine nelfinavir saquinavir ritonavir efavirenz]... [Pg.211]


See other pages where Human immunodeficiency virus delavirdine is mentioned: [Pg.173]    [Pg.325]   
See also in sourсe #XX -- [ Pg.185 ]




SEARCH



Delavirdine

Human immunodeficiency

Immunodeficiency

Immunodeficient

Viruses human

© 2024 chempedia.info