Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homogeneous catalysis ruthenium catalysts

Several copper, silver, ruthenium, rhodium, and cobalt compounds (e.g., Ru-Cl3 aq, [RuC h(l)ipy) (bipy=2,2 -bipyridine), RhCl3 aq, fotx(dimelbylglyoxima-to)cobalt derivatives (cobaloximes), etc.) have been found to catalyze hydrogenations in aqueous solutions [9]. Although important for the early research into homogeneous catalysis, these catalysts did not gain synthetic significance. [Pg.1334]

Catalytic hydrogenation of tnfluoroacetic acid gives tnfluoroethanol in high yield [73], but higherperfluorocarboxybc acids and their anhydndes are reduced much more slowly over rhodium, iridium, platinum, or ruthenium catalysts [7J 74] (equation 61) Homogeneous catalysis efficiently produces tnfluoroethanol from tnfluoroacetate esters [75] (equation 61)... [Pg.311]

The cost of the catalysts represents a major hurdle on the road to the industrial application of homogeneous catalysis, and in particular for the production of fine chemicals [1, 2], This is particularly true for chiral catalysts that are based on expensive metals, such as rhodium, iridium, ruthenium and palladium, and on chiral ligands that are prepared by lengthy total syntheses, which often makes them more expensive than the metals. In spite of this, the number of large-scale applications for these catalysts is growing. Clearly, these can only be economic if the substrate catalyst ratio (SCR) can be very high, often between 103 and 105. [Pg.1483]

Hydrogen addition to multiple bonds is catalyzed by certain complex metal salts in solution. This may be described as homogeneous catalysis and, compared to heterogeneous catalysis, is a relatively new development in the area of hydrogenation reactions. Rhodium and ruthenium salts appear to be generally useful catalysts ... [Pg.417]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]

Chandler BD, Gilbertson JD (2006) Dendrimer-Encapsulated Bimetallic Nanoparticles Synthesis, Characterization, and Applications to Homogeneous and Heterogeneous Catalysis. 20 97-120 ChataniN (2004) Selective Carbonylations with Ruthenium Catalysts. 11 173-195 Chatani N, see Kakiuchi F (2004) 11 45-79... [Pg.178]

Carbohydrate oxidations are generally performed with dioxygen in the presence of heterogeneous catalysts, such as Pd/C or Pt/C [230]. An example of homogeneous catalysis is the ruthenium-catalyzed oxidative cleavage of protected mannitol with hypochlorite (Fig. 4.77) [231]. [Pg.185]

It is mostly complexes of ruthenium and rhodium that have been used to conduct hydrogenation reactions in ionic liquids and little attention has so far been paid to modifying the employed catalysts to improve their performance in the ionic environment. The majority of the catalysts used are identical to those employed in conventional homogeneous catalysis conducted in molecular solvents like, for example, RhCl(PPh3)3 and RuCl2(PPh3)3. [Pg.45]

Metal complex chemistry, homogeneous catalysis and phosphane chemistry have always been strongly connected, since phosphanes constitute one of the most important families of ligands. The catalytic addition of P(III)-H or P(IV)-H to unsaturated compounds (alkene, alkyne) offers an access to new phosphines with a good control of the regio- and stereoselectivity [98]. Hydrophosphination of terminal nonfunctional alkynes has already been reported with lanthanides [99, 100], or palladium and nickel catalysts [101]. Ruthenium catalysts have made possible the hydrophosphination of functional alkynes, thereby opening the way to the direct synthesis of bidentate ligands (Scheme 8.35) [102]. [Pg.209]

Jessop and co-workers have pointed out that homogeneous catalysis in supercritical fluids can offer high rates, improved selectivity, and elimination of mass-transfer problems.169 They have used a ruthenium phosphine catalyst to reduce supercritical carbon dioxide to formic acid using hydrogen.170 The reaction might be used to recycle waste carbon dioxide from combustion. It also avoids the use of poisonous carbon monoxide to make formic acid and its derivatives. There is no need for the usual solvent for such a reaction, because the excess carbon dioxide is the solvent. If the reaction is run in the presence of dimethy-lamine, dimethylformamide is obtained with 100% selectivity at 92-94% conversion.171 In this example, the ruthenium phosphine catalyst was supported on silica. Asymmetric catalytic hydrogenation of dehydroaminoacid derivatives (8.16) can be performed in carbon dioxide using ruthenium chiral phosphine catalysts.172... [Pg.212]


See other pages where Homogeneous catalysis ruthenium catalysts is mentioned: [Pg.290]    [Pg.293]    [Pg.113]    [Pg.441]    [Pg.83]    [Pg.117]    [Pg.228]    [Pg.642]    [Pg.375]    [Pg.178]    [Pg.242]    [Pg.39]    [Pg.40]    [Pg.91]    [Pg.155]    [Pg.2804]    [Pg.4131]    [Pg.4131]    [Pg.1128]    [Pg.1203]    [Pg.117]    [Pg.74]    [Pg.227]    [Pg.228]    [Pg.440]    [Pg.467]    [Pg.719]    [Pg.248]    [Pg.107]    [Pg.2803]    [Pg.4130]    [Pg.4130]    [Pg.609]    [Pg.81]    [Pg.51]    [Pg.51]   
See also in sourсe #XX -- [ Pg.375 , Pg.376 , Pg.381 ]




SEARCH



Catalyst homogenous

Catalysts catalysis

Catalysts homogeneous

Catalysts homogeneous catalysis

Homogeneous catalysis

Homogeneous ruthenium catalyst

Homogenous catalysis

Ruthenium catalysis

Ruthenium homogeneous catalysis

© 2024 chempedia.info