Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homoallylic reactions

The last group of reactions uses ring opening of carbonyl or 1-hydroxyalkyl substituted cyclopropanes, which operate as a -synthons. d -Synthons, e.g. hydroxide or halides, yield 1,4-disubstituted products (E. Wenkert, 1970 A). (1-Hydroxyalkyl)- and (1-haloalkyl)-cyclopropanes are rearranged to homoallylic halides, e.g. in Julia s method of terpene synthesis (M. Julia, 1961, 1974 S.F. Brady, I968 J.P. McCormick, 1975). [Pg.69]

The reaction of alkenyl mercurials with alkenes forms 7r-allylpalladium intermediates by the rearrangement of Pd via the elimination of H—Pd—Cl and its reverse readdition. Further transformations such as trapping with nucleophiles or elimination form conjugated dienes[379]. The 7r-allylpalladium intermediate 418 formed from 3-butenoic acid reacts intramolecularly with carboxylic acid to yield the 7-vinyl-7-laCtone 4I9[380], The /i,7-titisaturated amide 421 is obtained by the reaction of 4-vinyl-2-azetidinone (420) with an organomercur-ial. Similarly homoallylic alcohols are obtained from vinylic oxetanes[381]. [Pg.81]

The alkenyloxirane 126 in excess reacts with aryl and alkenyl halides or triflates in the presence of sodium formate to afford the allylic alcohol 127[104], Similarly, the reaction of the alkenyloxetane 128 gives the homo-allylic alcohol 130[105]. These reactions can be explained by insertion of the double bond in the Ar—Pd bond, followed by ring opening (or /3-eliraination) to form the allylic or homoallylic alkoxypalladium 129, which is converted into the allylic 127 or homoallylic alcohol 130 by the reaction of formate. The 3-alkenamide 132 was obtained by the reaction of the 4-alkenyl-2-azetizinone 131 with aryl iodide and sodium formate [106]. [Pg.146]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

Organoboranes are reactive compounds for cross-coupling[277]. The synthesis of humulene (83) by the intramolecular cross-coupling of allylic bromide with alkenylborane is an example[278]. The reaction of vinyiborane with vinyl-oxirane (425) affords the homoallylic alcohol 426 by 1,2-addition as main products and the allylic alcohol 427 by 1,4-addition as a minor product[279]. Two phenyl groups in sodium tetraphenylborate (428) are used for the coupling with allylic acetate[280] or allyl chloride[33,28l]. [Pg.347]

It was claimed that the Z-form of the allylic acetate 430 was retained in homoallylic ketone 431 obtained by reaction with the potassium enolate of 3-vinylcyclopentanone (429), after treatment with triethylborane[282]. Usually this is not possible. The reaction of a (Z)-allylic chloride with an alkenylaluminum reagent to give 1,4-dienes proceeds with retention of the stereochemistry to a considerable extent when it is carried out at -70 C[283]. [Pg.348]

The Pd-catalyzed hydrogenolysis of vinyloxiranes with formate affords homoallyl alcohols, rather than allylic alcohols regioselectively. The reaction is stereospecific and proceeds by inversion of the stereochemistry of the C—O bond[394,395]. The stereochemistry of the products is controlled by the geometry of the alkene group in vinyloxiranes. The stereoselective formation of stereoisomers of the syn hydroxy group in 630 and the ami in 632 from the ( )-epoxide 629 and the (Z)-epoxide 631 respectively is an example. [Pg.376]

The displacement of homoallylic tosylates follows an entirely different course with a strong tendency for the formation of cyclo steroids. Thus, when the 3/ -tosylate of a A -steroid (187) is treated with lithium aluminum deuteride, the product consists mainly of a 3l3-di-A -steroid (188) and a 6c-dj-3,5a-cyclo steroid (189). The incorporation of deuterium at the 3 -position in (188) indicates that this reaction proceeds via a 3,5-cyclo cholesteryl cation instead of the usual S, 2 type displacement sequence. This is further substantiated by the formation of the cyclo steroid (189) in which the deuterium at C-6 is probably in the p configuration. ... [Pg.197]

All the rearranged products derived from (12) and (15) have been rationalized as arising by proton loss or reaction with fluoride ion of the respective homoallylic C-19 cations. The structures of the cations derived from (15) are represented by structures (20) to (24)." ... [Pg.439]

Careful studies of the reaction of the fluoroamine with the homoallylic alcohols 3 -fluoro-19-hydroxycholest-5-ene and 3a- and 3j5-hydroxy-17j5-acetoxyestr-5(10)-ene which bear on the proposed mechanism have been reported recently. [Pg.440]

The synthesis of 11 jS-hydroxy-A -3-ketones (17) from A ° -compounds (16) has been carried out by the homoallylic hydroxyl-assisted Simmons-Smith reaction. [Pg.111]

Hecogenin p-toluenesulfonylhydrazone, 402 Hofmann-Loffler reaction, 257 Homoallylic rearrangements, 379 A-homo-5a-cholestan-3-one, 356, 358, 362 A-homo-5a-cholestan-4-one, 359, 360, 368 A-homo-choIest-4a-en-3-one, 366 A-homo-estra-1(10), 2,4a-triene-4,17-dione, 367,370... [Pg.459]

An elegant application of the Vilsmeier reaction is the synthesis of substituted biphenyls as reported by Rao and RaoJ Starting with homoallylic alcohol 8, the biphenyl derivative 9 was obtained from a one-pot reaction in 80% yield ... [Pg.281]

Scheme 1). Introduction of a jt bond into the molecular structure of 1 furnishes homoallylic amine 2 and satisfies the structural prerequisite for an aza-Prins transform.4 Thus, disconnection of the bond between C-2 and C-3 affords intermediate 3 as a viable precursor. In the forward sense, a cation ji-type cyclization, or aza-Prins reaction, could achieve the formation of the C2-C3 bond and complete the assembly of the complex pentacyclic skeleton of the target molecule (1). Reduction of the residual n bond in 2, hydro-genolysis of the benzyl ether, and adjustment of the oxidation state at the side-chain terminus would then complete the synthesis of 1. [Pg.466]

The aza-Cope/Mannich reaction takes advantage of the facility with which a y,<5-unsaturated itninium ion, such as 6, participates in a [3,3] sigmatropic rearrangement to give an isomeric species which is suitably functionalized for an intramolecular and irreversible Mannich cyclization (see intermediate 7). The aza-Cope rearrangement substrate 6 is simply an unsaturated iminium ion which can be fashioned in a number of ways from a homoallylic... [Pg.642]

Pd(0)-catalyzed hydrogenolysis of vinylepoxides offers an attractive regio- and dia-stereoselective route to homoallylic alcohols (Scheme 9.36) [104, 155, 156]. Thus, hydrogenolysis of ( ) olefin 88 affords syn isomer 89 with inversion of configuration at the allylic carbon, while subjection of (Z) isomer 90 to identical reaction conditions results in the anti isomer 91. The outcomes of these reactions are ex-... [Pg.341]

Hydroxy-l-alkenyl diisopropylcarbamates 2 (X = OCb), in this respect, occupy a medium position since they are stable in strongly acidic and basic protic solvents. For deblocking vinyl carbamates, the presence of catalytic amounts of mercuric or palladium(II) salts is required. Due to this stability, several reactions of homoallylic alcohols, proceeding with high diastereo-selectivity, e g., epoxidation, are applicable in order to introduce further hetero-substituents. [Pg.227]

Allylboron compounds have proven to be an exceedingly useful class of allylmetal reagents for the stereoselective synthesis of homoallylic alcohols via reactions with carbonyl compounds, especially aldehydes1. The reactions of allylboron compounds and aldehydes proceed by way of cyclic transition states with predictable transmission of olefinic stereochemistry to anti (from L-alkene precursors) or syn (from Z-alkene precursors) relationships about the newly formed carbon-carbon bond. This stereochemical feature, classified as simple diastereoselection, is general for Type I allylorganometallicslb. [Pg.260]

The surprising selectivity in the formation of 4 and 5 is apparently due to thermodynamic control (rapid equilibration via the 1,3-boratropic shift). Structures 4 and 5 are also the most reactive of those that are present at equilibrium, and consequently reactions with aldehydes are very selective. The homoallylic alcohol products are useful intermediates in stereoselective syntheses of trisubstituted butadienes via acid- or base-catalyzed Peterson eliminations. [Pg.319]

Both allylstannane transmetalation and thermolysis of homoallyl stannoxanes have been used to prepare 2-butenyltin halides as (E)j(Z) mixtures44-45. The reaction between 2-butenyl-(tributyl)stannane and dibutyltin dichloride initially provides dibutyl(l-methyl-2-propenyl)tin chloride as the kinetic product by an SE2 process, but this isomerizes under the reaction conditions to give a mixture containing the (Z)- and (E)-2-butenyl isomers46. [Pg.366]

A )-1-Methyl-2-butenylstannanes similarly give ann-homoallylic alcohols on healing with aldehydes, only traces of the sjn-isomers being detected. Moreover, these reactions are highly stereoselective for formation of (Z) double bonds in the products. It would appear that small amounts (ca. 10%) of the (Z)-isomers in the (A)-l-methyl-2-butenylstannanes (see Section 1.3.3.3.6.1.1.2.) do not interfere because they are significantly less reactive17. [Pg.368]

One limitation of these noncatalyzed allyl(trialkyl)- and allyl(triaryl)stannane-aldehyde reactions is the high temperature required unless the aldehyde is activated towards nucleophilic attack. Allyltin halides are much more reactive because of their enhanced Lewis acid character however 2-butenyltin halides show reduced syn I anti selectivity45, and give other products including linear homoallylic alcohols and tetrahydropyrans47. [Pg.369]

Transmetalation to give l-methyl-2-propenylaluminum followed by isomerization to 2-butenyl isomers may be involved in reactions between aldehydes and 2-butenyl(tributyl)-stannane induced by aluminum(III) chloride in the presence of one mole equivalent of 2-propanol. Benzaldehyde and reactive, unhindered, aliphatic aldehydes give rise to the formation of linear homoallyl alcohols, whereas branched products are obtained with less reactive, more hindered, aldehydes66,79. [Pg.373]


See other pages where Homoallylic reactions is mentioned: [Pg.45]    [Pg.68]    [Pg.159]    [Pg.212]    [Pg.311]    [Pg.229]    [Pg.437]    [Pg.25]    [Pg.101]    [Pg.59]    [Pg.182]    [Pg.187]    [Pg.265]    [Pg.267]    [Pg.273]    [Pg.290]    [Pg.314]    [Pg.373]   
See also in sourсe #XX -- [ Pg.48 , Pg.236 ]




SEARCH



Aldol reaction homoallylic alcohol synthesis

Alkenes, homoallylic addition reactions

Alkenes, homoallylic reaction

Cyclopropylcarbinyl-homoallyl reactions

Electrophilic reactions homoallyl-, homopropargyl

Homoallyl

Homoallyl alcohols Prins reaction

Homoallyl ethers reaction

Homoallylation

Homoallylic

Homoallylic alcohols Keck allylation reaction

Homoallylic alcohols Prins reaction

Rearrangement reactions cyclopropylcarbinyl-homoallyl

Sulfonamides, homoallylic via retro-ene reactions

© 2024 chempedia.info