Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hollow cathode lamp, emission

One often unsuspected source of error can arise from interference by the substances originating in the sample which are present in addition to the analyte, and which are collectively termed the matrix. The matrix components could enhance, diminish or have no effect on the measured reading, when present within the normal range of concentrations. Atomic absorption spectrophotometry is particularly susceptible to this type of interference, especially with electrothermal atomization. Flame AAS may also be affected by the flame emission or absorption spectrum, even using ac modulated hollow cathode lamp emission and detection (Faithfull, 1971b, 1975). [Pg.204]

Silicate, nickel, and cobalt tend to interfere in the air-acetylene flame, although nickel and cobalt are rarely present in sufficient excess to cause a problem. Silicate interference may be eliminated at modest excesses by the use of lanthanum as a releasing agent or by using a nitrous oxide-acetylene flame. Very careful optimization is sometimes necessary, for example in the analysis of freshwaters, when concentrations are very low. It is important to use a narrow spectral bandpass and to make sure that the correct line is being used, because the hollow cathode lamp emission spectrum of iron is extremely complex. If you have any doubts about monochromator calibration, check the sensitivity at adjacent lines ... [Pg.85]

The resolution and selectivity in ICP emission comes primarily from the monochromator. As a result, a high-resolution monochromator can isolate the analyte spectral line from lines of concomitants and background emission. It can thus reduce spectral interferences. In atomic absorption spectrometry, the resolution comes primarily from the very narrow hollow cathode lamp emission. The monochromator must only isolate the emission line of the analyte element from lines of impurities and the fill gas, and from background emission from the atomizer. A much lower resolution is needed for this puipose. [Pg.1098]

Fig. 12.19 Background correction by source self-reversal, (a) Modulation of the lamp current that drives the hollow cathode lamp (b) resulting hollow cathode lamp emission line profiles generated at high and low current operation. Fig. 12.19 Background correction by source self-reversal, (a) Modulation of the lamp current that drives the hollow cathode lamp (b) resulting hollow cathode lamp emission line profiles generated at high and low current operation.
The emission spectrum from a hollow cathode lamp includes, besides emission lines for the analyte, additional emission lines for impurities present in the metallic cathode and the filler gas. These additional lines serve as a potential source of stray radiation that may lead to an instrumental deviation from Beer s law. Normally the monochromator s slit width is set as wide as possible, improving the throughput of radiation, while being narrow enough to eliminate this source of stray radiation. [Pg.418]

As indicated in Fig. 21.3, for both atomic absorption spectroscopy and atomic fluorescence spectroscopy a resonance line source is required, and the most important of these is the hollow cathode lamp which is shown diagrammatically in Fig. 21.8. For any given determination the hollow cathode lamp used has an emitting cathode of the same element as that being studied in the flame. The cathode is in the form of a cylinder, and the electrodes are enclosed in a borosilicate or quartz envelope which contains an inert gas (neon or argon) at a pressure of approximately 5 torr. The application of a high potential across the electrodes causes a discharge which creates ions of the noble gas. These ions are accelerated to the cathode and, on collision, excite the cathode element to emission. Multi-element lamps are available in which the cathodes are made from alloys, but in these lamps the resonance line intensities of individual elements are somewhat reduced. [Pg.790]

Deuterium arc background correction. This system uses two lamps, a high-intensity deuterium arc lamp producing an emission continuum over a wide wavelength range and the hollow cathode lamp of the element to be determined. [Pg.795]

Fig. 14.1 (a) Red shift of Cr emission line peaks as a function of Ar bath gas pressure at 3,230 K. The three curves correspond to the three peaks of the triplet centred on 27,820 cm-1, (b) Corrected MBSL spectra (orange) and Cr emission from a hollow cathode lamp at low pressure (blue). Relative red shifts for each peak are indicated [11] (reprinted with permission from Annual Reviews)... [Pg.359]

Glow discharge lamp (analogous to hollow cathode lamp) in which the sample acts as the cathode. Attached to a standard atomic emission spectrometer. [Pg.294]

Ideally, the emission line used should have a half-width less than that of the corresponding absorption line otherwise equation (8.4) will be invalidated. The most suitable and widely used source which fulfils this requirement is the hollow-cathode lamp, although interest has also been shown in microwave-excited electrodeless discharge tubes. Both sources produce emission lines whose halfwidths are considerably less than absorption lines observed in flames because Doppler broadening in the former is less and there is negligible collisional broadening. [Pg.326]

Radiation is derived from a sealed quartz tube containing a few milligrams of an element or a volatile compound and neon or argon at low pressure. The discharge is produced by a microwave source via a waveguide cavity or using RF induction. The emission spectrum of the element concerned contains only the most prominent resonance lines and with intensities up to one hundred times those derived from a hollow-cathode lamp. However, the reliability of such sources has been questioned and the only ones which are currently considered successful are those for arsenic, antimony, bismuth, selenium and tellurium using RF excitation. Fortunately, these are the elements for which hollow-cathode lamps are the least successful. [Pg.327]

Atomic fluorescence spectrometry has a number of potential advantages when compared to atomic absorption. The most important is the relative case with which several elements can be determined simultaneously. This arises from the non-directional nature of fluorescence emission, which enables separate hollow-cathode lamps or a continuum source providing suitable primary radiation to be grouped around a circular burner with one or more detectors. [Pg.334]

Essentially the same spectrometer as is used in atomic absorption spectroscopy can also be used to record atomic emission data, simply by omitting the hollow cathode lamp as the source of the radiation. The excited atoms in the flame will then radiate, rather than absorb, and the intensity of the emission is measured via the monochromator and the photomultiplier detector. At the temperature achieved in the flame, however, very few of the atoms are in the excited state ( 10% for Cs, 0.1% for Ca), so the sample atoms are not normally sufficiently excited to give adequate emission intensity, except for the alkali metals (which are often equally well determined by emission as by absorption). Nevertheless, it can be useful in cases where elements are required for which no lamp is available, although some elements exhibit virtually no emission characteristics at these temperatures. [Pg.56]

The most widely used spectral line source for atomic absorption spectroscopy is the hollow cathode lamp. An illustration of this lamp is shown in Figure 9.5. The internal atoms mentioned above are contained in a cathode, a negative electrode. This cathode is a hollowed cup, pictured with a C shape in the figure. The internal excitation and emission process occurs inside this cup when the lamp is on and the anode (positive electrode) and cathode are connected to a high voltage. The light is emitted as shown. [Pg.250]

By far the most common lamps used in AAS emit narrow-line spectra of the element of interest. They are the hollow-cathode lamp (HCL) and the electrodeless discharge lamp (EDL). The HCL is a bright and stable line emission source commercially available for most elements. However, for some volatile elements such as As, Hg and Se, where low emission intensity and short lamp lifetimes are commonplace, EDLs are used. Boosted HCLs aimed at increasing the output from the HCL are also commercially available. Emerging alternative sources, such as diode lasers [1] or the combination of a high-intensity source emitting a continuum (a xenon short-arc lamp) and a high-resolution spectrometer with a multichannel detector [2], are also of interest. [Pg.11]

When the intensity of a hollow cathode lamp increases because of a reduction in the shunt resistance, the profile of the emission line changes. As the central part of the cathode becomes very hot, the line is broadened for several reasons. However, vaporised atoms emitted by the cathode will reabsorb in a colder part of the lamp in the form of a very fine line. The net result is that the emission curve dips in the middle because of self-absorption. This observation is the basis of the pulsed lamp technique for correction of background absorption (Fig. 14.15). [Pg.267]

Figure 14.15—Pulsed hollow cathode lamp background correction, a) Shape of the emission line from a hollow cathode lamp under normal operating conditions, b) the 4000 Smith-Hieftje model from Thermo Jarrell Ash uses the principle of pulsed-source correction. The mercury source and the retractable mirrors are used for calibration of the monochromator. (Reproduced by permission of Thermo Jarrell Ash.)... Figure 14.15—Pulsed hollow cathode lamp background correction, a) Shape of the emission line from a hollow cathode lamp under normal operating conditions, b) the 4000 Smith-Hieftje model from Thermo Jarrell Ash uses the principle of pulsed-source correction. The mercury source and the retractable mirrors are used for calibration of the monochromator. (Reproduced by permission of Thermo Jarrell Ash.)...
If the sample is a conductor, it is possible to use it as the cathode of a spectral lamp whose principle of operation is identical to that described for hollow cathode lamps (cf. section 14.5 and Fig. 15.3). The device must be sealed before it can be used, which represents a technical constraint. The advantage of this process, which is commonly used for surface analysis, is that it produces spectra with narrow emission lines because atomisation is made at a lower temperature than with the electrical arc method. [Pg.276]

Figure 21-3 A portion of the emission spectrum of a steel hollow-cathode lamp, showing lines from gaseous Fe, Ni.and Cr atoms and weak lines from Cr and Fe+ ions. The monochromator resolution is 0.001 nm, which is comparable to the true linewidths. Figure 21-3 A portion of the emission spectrum of a steel hollow-cathode lamp, showing lines from gaseous Fe, Ni.and Cr atoms and weak lines from Cr and Fe+ ions. The monochromator resolution is 0.001 nm, which is comparable to the true linewidths.

See other pages where Hollow cathode lamp, emission is mentioned: [Pg.57]    [Pg.55]    [Pg.57]    [Pg.55]    [Pg.416]    [Pg.435]    [Pg.65]    [Pg.796]    [Pg.617]    [Pg.464]    [Pg.295]    [Pg.323]    [Pg.324]    [Pg.326]    [Pg.26]    [Pg.28]    [Pg.309]    [Pg.235]    [Pg.237]    [Pg.243]    [Pg.244]    [Pg.245]    [Pg.51]    [Pg.36]    [Pg.258]    [Pg.81]    [Pg.126]    [Pg.259]    [Pg.463]    [Pg.465]    [Pg.465]    [Pg.471]   


SEARCH



Cathode lamp

Hollow cathode

Lampe

Lamps

© 2024 chempedia.info