Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Highly introduction

The sample must be introduced at a rate slightly exceeding the evaporation rate. Slower injection causes the loss of solvent trapping because all solvent evaporate concurrently, whereas a too high introduction rate results in flooding of the solvent into the retaining precolumn and, eventually, the analytical column and the vapor exit. [Pg.889]

The needs for hydrogen being considerably accentuated, the introduction of partial oxidation of at least a part of the ultimate residues is foreseen, in spite of its high cost. [Pg.411]

The introduction of automated scanning systems was a great leap forward in the development. That way, the uncertainties of manual probe guidance were eliminated. Usually, these systems were designed for high-frequency surface tests and followed the outer profile of the surface with a probe that could be moved in several axes. A continuous 100 % scan became possible and, as a result, the documentation of the tests with stripchart recorders suggested itself. Now for the first time, wheel testing became retraceable. [Pg.306]

A very pedagogical, highly readable introduction to quasi-Newton optimization methods. It includes a modular system of algoritlnns in pseudo-code which should be easy to translate to popular progrannning languages like C or Fortran. [Pg.2360]

Semiconductors are a class of materials whose conductivity, while highly pure, varies witli temperature as exp (-Ag//cg7), where is tlie size of a forbidden energy gap. The conductivity of semiconductors can be made to vary over orders of magnitude by doping, tlie intentional introduction of appropriate impurities. The range in which tlie conductivity of Si can be made to vary is compared to tliat of typical insulators and metals in figure C2.16.1. [Pg.2877]

Vibrational frequencies from semiempirical calculations tend to be qualitative in that they reproduce the general trend mentioned in the introduction here. However, the actual values are erratic. Some values will be close, whereas others are often too high. SAMI is generally the most accurate semiempirical... [Pg.93]

A solution of 0.10 mol of freshly distilled diethylaminopropyne in 80 ml of dry (distilled from phosphorus pentoxide) acetonitrile was cooled to 5°C and dry carbon dioxide was introduced into the vigorously agitated solution at a rate of about 0.3 1/min. The temperature rose above 20°C within a few minutes, but was kept at about 30°C by occasionally immersing the flask in a bath of ice-water. The introduction of CO2 was continued until the temperature had dropped to 25°C and the typical odour of the yneamine had disappeared completely. The yellow solution was concentrated in a water-pump vacuum. The residue, a sirupy liquid, had the theoretically required weight and consisted of reasonably pure (about 955 ) allenyl-diamide. If desired the product car be distilled (short-path distillation) in a high vacuum. It solidified upon standing at -25 C. [Pg.211]

Allylic acetates are widely used. The oxidative addition of allylic acetates to Pd(0) is reversible, and their reaction must be carried out in the presence of bases. An important improvement in 7r-allylpalladium chemistry has been achieved by the introduction of allylic carbonates. Carbonates are highly reactive. More importantly, their reactions can be carried out under neutral con-ditions[13,14]. Also reactions of allylic carbamates[14], allyl aryl ethers[6,15], and vinyl epoxides[16,17] proceed under neutral conditions without addition of bases. [Pg.292]

Highly colored, they have been used to dye cellulose acetate (552) and acrylic fibers (553). Cationic dyes prepared from 2-azothiazoles by simple alkylation on the ring nitrogen (552) have been used increasingly with the introduction of polyacrylonitrile fibers with basic sites that can be colored with such dyes (554). [Pg.105]

For mixture.s the picture is different. Unless the mixture is to be examined by MS/MS methods, usually it will be necessary to separate it into its individual components. This separation is most often done by gas or liquid chromatography. In the latter, small quantities of emerging mixture components dissolved in elution solvent would be laborious to deal with if each component had to be first isolated by evaporation of solvent before its introduction into the mass spectrometer. In such circumstances, the direct introduction, removal of solvent, and ionization provided by electrospray is a boon and puts LC/MS on a level with GC/MS for mixture analysis. Further, GC is normally concerned with volatile, relatively low-molecular-weight compounds and is of little or no use for the many polar, water soluble, high-molecular-mass substances such as the peptides, proteins, carbohydrates, nucleotides, and similar substances found in biological systems. LC/MS with an electrospray interface is frequently used in biochemical research and medical analysis. [Pg.59]

Other vapor introduction systems are discussed in Parts B and C (Chapters 16 and 17) because, although liquids and solids are ultimately introduced to the plasma flame as vapors, these samples are usually prepared differently from naturally gaseous ones. For example, electrothermal (oven) or laser heating of solids and liquids to form vapors is used extensively to get the samples into the plasma flame. At one extreme with very volatile liquids, no heating is necessary, but, at the other extreme, very high temperatures are needed to vaporize a sample. For convenience, the electrothermal and laser devices are discussed in Part C (Chapter 17) rather than here. [Pg.102]

Suitable inlets commonly used for liquids or solutions can be separated into three major classes, two of which are discussed in Parts A and C (Chapters 15 and 17). The most common method of introducing the solutions uses the nebulizer/desolvation inlet discussed here. For greater detail on types and operation of nebulizers, refer to Chapter 19. Note that, for all samples that have been previously dissolved in a liquid (dissolution of sample in acid, alkali, or solvent), it is important that high-purity liquids be used if cross-contamination of sample is to be avoided. Once the liquid has been vaporized prior to introduction of residual sample into the plasma flame, any nonvolatile impurities in the liquid will have been mixed with the sample itself, and these impurities will appear in the results of analysis. The problem can be partially circumvented by use of blanks, viz., the separate examination of levels of residues left by solvents in the absence of any sample. [Pg.104]

In principle, DSI is the simplest method for sample introduction into a plasma torch since the sample is placed into the base of the flame, which then heats, evaporates, and ionizes the sample, all in one small region. Inherent sensitivity is high because the sample components are already in the flame. A diagrammatic representation of a DSI assembly is shown in Figure 17.4. [Pg.114]

The use of vibrational Raman spectroscopy in qualitative analysis has increased greatly since the introduction of lasers, which have replaced mercury arcs as monochromatic sources. Although a laser Raman spectrometer is more expensive than a typical infrared spectrometer used for qualitative analysis, it does have the advantage that low- and high-wavenumber vibrations can be observed with equal ease whereas in the infrared a different, far-infrared, spectrometer may be required for observations below about 400 cm. ... [Pg.159]


See other pages where Highly introduction is mentioned: [Pg.275]    [Pg.178]    [Pg.275]    [Pg.178]    [Pg.277]    [Pg.165]    [Pg.507]    [Pg.305]    [Pg.2338]    [Pg.2709]    [Pg.2926]    [Pg.197]    [Pg.270]    [Pg.5]    [Pg.228]    [Pg.598]    [Pg.22]    [Pg.564]    [Pg.870]    [Pg.154]    [Pg.193]    [Pg.456]    [Pg.3]    [Pg.70]    [Pg.652]    [Pg.20]    [Pg.116]    [Pg.279]    [Pg.378]    [Pg.362]    [Pg.751]    [Pg.3]    [Pg.7]    [Pg.9]    [Pg.55]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



© 2024 chempedia.info