Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Higher metathesis

A second generation of the Grubbs catalyst has a higher metathesis activity. It can be illustrated as follows ... [Pg.303]

As a result, the pyridine ligand is more labile in complex 16 and 17 than in 15 resulting in higher metathesis activity. It must be noted that the presence of the aryloxide ligands increased the affinity of these complexes for silica thus allowing an efficient removal of ruthenium contaminants by a single column chromatography purification. [Pg.13]

The production of CPO is based on relatively inexpensive cycHc substances these must be derivatized, however, to meet the requirements of resistance to heat softening and suitabiUty for metallization. Metathesis polymerization is problem-prone, since relatively large amounts of catalyst (WCl, C2H AlCl2) must be removed by solvent extraction (216). In the process, the price of CPO, at small batches, is several times higher than that of BPA-PC. [Pg.161]

Olefin Metathesis. The olefin metathesis (dismutation) reaction (30), discovered by Eleuterio (31), converts olefins to lower and higher molecular weight olefins. For example, propylene is converted into ethylene and butene... [Pg.168]

The choice of the anion ultimately intended to be an element of the ionic liquid is of particular importance. Perhaps more than any other single factor, it appears that the anion of the ionic liquid exercises a significant degree of control over the molecular solvents (water, ether, etc.) with which the IL will form two-phase systems. Nitrate salts, for example, are typically water-miscible while those of hexaflu-orophosphate are not those of tetrafluoroborate may or may not be, depending on the nature of the cation. Certain anions such as hexafluorophosphate are subject to hydrolysis at higher temperatures, while those such as bis(trifluoromethane)sulfonamide are not, but are extremely expensive. Additionally, the cation of the salt used to perform any anion metathesis is important. While salts of potassium, sodium, and silver are routinely used for this purpose, the use of ammonium salts in acetone is frequently the most convenient and least expensive approach. [Pg.35]

Olefin metatheses are equilibrium reactions among the two-reactant and two-product olefin molecules. If chemists design the reaction so that one product is ethylene, for example, they can shift the equilibrium by removing it from the reaction medium. Because of the statistical nature of the metathesis reaction, the equilibrium is essentially a function of the ratio of the reactants and the temperature. For an equimolar mixture of ethylene and 2-butene at 350°C, the maximum conversion to propylene is 63%. Higher conversions require recycling unreacted butenes after fractionation. This reaction was first used to produce 2-butene and ethylene from propylene (Chapter 8). The reverse reaction is used to prepare polymer-grade propylene form 2-butene and ethylene ... [Pg.247]

In this process, which has been jointly developed by Institute Francais du Petrole and Chinese Petroleum Corp., the C4 feed is mainly composed of 2-butene (1-butene does not favor this reaction but reacts differently with olefins, producing metathetic by-products). The reaction between 1-butene and 2-butene, for example, produces 2-pentene and propylene. The amount of 2-pentene depends on the ratio of 1-butene in the feedstock. 3-Hexene is also a by-product from the reaction of two butene molecules (ethylene is also formed during this reaction). The properties of the feed to metathesis are shown in Table 9-1. Table 9-2 illustrates the results from the metatheses reaction at two different conversions. The main by-product was 2-pentene. Olefins in the range of Ce-Cg and higher were present, but to a much lower extent than C5. [Pg.247]

The metathesis of acyclic alkadienes and higher polyenes may involve both inter- and intramolecular processes. An example of an intermolecular reaction is the conversion of 1,5-hexadiene into 1,5,9-decatriene and ethene ... [Pg.134]

Chemistry on solid support has gained tremendous importance during the last few years, mainly driven by the needs of the pharmaceutical sciences. Due to the robust and tolerable nature of the available catalysts, metathesis was soon recognized as a useful technique in this context. Three conceptually different, RCM-based strategies are outlined in Fig. 11. In the approach delineated in Fig. 1 la, a polymer-bound diene 353 is subjected to RCM. The desired product 354 is formed with concomitant traceless release from the resin. This strategy is very favorable, since only compounds with the correct functionality will be liberated, while unwanted by-products remain attached to the polymer. However, as the catalyst is captured in this process by the matrix (355), a higher catalyst loading will be required, or ancillary alkenes have to be added to liberate the catalyst. [Pg.339]

The product selectivities in propane metathesis can also be explained by using the same model in which [1,3]- and [1,2]-interactions determine the ratio of products. For instance, the butane/pentane ratios are 6.2 and 4.8 for [(= SiO)Ta(= CHfBu)(CH2tBu)2] and [(= SiO)2Ta - H], respectively (Table 5). A similar trend is observed for the isobutane/isopentane ratio, which are 4.1 and 3.0, respectively. The higher selectivity in butanes (the transfer of one carbon via metallacyclobutanes involving [l,3]-interactions) than that of pentanes (the transfer of two carbons via metallacyclobutanes involving [1,2]-interactions) is consistent with this model (Scheme 28). [Pg.181]

Additionally, grafting molecular entities on surfaces has already allowed to discover several reactions the low temperature hydrogenolysis of alkanes including the depolymerization of polyolefins, the alkane metathesis and the cross-metathesis of methane and alkanes. These two latter reactions can allow higher molecular weight alkanes to be built. [Pg.185]

The choice of solvent may have a critical impact on efficiency too. In metathesis, dichloromethane, 1,2-dichloroethane and toluene are the solvents most commonly used. There are examples that show much higher yields in ring closing metathesis (RCM) when using fluorinated solvents [150]. An impressive effect of hexafluorobenzene as a solvent for CM is the modification of the steroid 93 the use of 1,2-dichloroethane leads to a very low yield and significant amounts of dimerisa-tion while the same reaction proceeds in 90% yield in C F (Scheme 3.14) [151]. [Pg.93]

This catalyst can catalyze a new reaction, called alkane metathesis. By this reaction, alkanes are transformed into higher and lower alkanes.265 Silica-supported zirconium catalysts were also used for the mild oxidation of alkenes by H202 266... [Pg.272]


See other pages where Higher metathesis is mentioned: [Pg.39]    [Pg.62]    [Pg.189]    [Pg.526]    [Pg.39]    [Pg.62]    [Pg.189]    [Pg.526]    [Pg.409]    [Pg.1961]    [Pg.163]    [Pg.35]    [Pg.693]    [Pg.12]    [Pg.158]    [Pg.14]    [Pg.50]    [Pg.244]    [Pg.249]    [Pg.255]    [Pg.274]    [Pg.314]    [Pg.316]    [Pg.325]    [Pg.454]    [Pg.195]    [Pg.207]    [Pg.219]    [Pg.150]    [Pg.175]    [Pg.66]    [Pg.71]    [Pg.77]    [Pg.157]    [Pg.218]    [Pg.220]    [Pg.81]    [Pg.34]    [Pg.123]    [Pg.457]    [Pg.483]    [Pg.158]   
See also in sourсe #XX -- [ Pg.47 ]




SEARCH



Metathesis Shell higher olefin process

Shell Higher Olefin Process alkene metathesis

© 2024 chempedia.info