Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High styrene block copolymers

Styrenic block copolymers (SBCs) are also widely used in HMA and PSA appHcations. Most hot melt appHed pressure sensitive adhesives are based on triblock copolymers consisting of SIS or SBS combinations (S = styrene, I = isoprene B = butadiene). Pressure sensitive adhesives typically employ low styrene, high molecular weight SIS polymers while hot melt adhesives usually use higher styrene, lower molecular weight SBCs. Resins compatible with the mid-block of an SBC improves tack properties those compatible with the end blocks control melt viscosity and temperature performance. [Pg.358]

Depending on the concentration, the solvent, and the shear rate of measurement, concentrated polymer solutions may give wide ranges of viscosity and appear to be Newtonian or non-Newtonian. This is illustrated in Eigure 10, where solutions of a styrene—butadiene—styrene block copolymer are Newtonian and viscous at low shear rates, but become shear thinning at high shear rates, dropping to relatively low viscosities beyond 10 (42). The... [Pg.171]

Proportion of Hard Segments. As expected, the modulus of styrenic block copolymers increases with the proportion of the hard polystyrene segments. The tensile behavior of otherwise similar block copolymers with a wide range of polystyrene contents shows a family of stress—strain curves (4,7,8). As the styrene content is increased, the products change from very weak, soft, mbbedike materials to strong elastomers, then to leathery materials, and finally to hard glassy thermoplastics. The latter have been commercialized as clear, high impact polystyrenes under the trade name K-Resin (39) (Phillips Petroleum Co.). Other types of thermoplastic elastomers show similar behavior that is, as the ratio of the hard to soft phase is increased, the product in turn becomes harder. [Pg.13]

Adhesives, Coatings, and Sealants. Eor these appHcations, styrenic block copolymers must be compounded with resins and oils (Table 10) to obtain the desired properties (56—58). Materials compatible with the elastomer segments soften the final product and give tack, whereas materials compatible with the polystyrene segments impart hardness. The latter are usually styrenic resins with relatively high softening points. Materials with low softening points are to be avoided, as are aromatic oils, since they plasticize the polystyrene domains and reduce the upper service temperature of the final products. [Pg.18]

Blends with styrenic block copolymers improve the flexibiUty of bitumens and asphalts. The block copolymer content of these blends is usually less than 20% even as Httie as 3% can make significant differences to the properties of asphalt (qv). The block copolymers make the products more flexible, especially at low temperatures, and increase their softening point. They generally decrease the penetration and reduce the tendency to flow at high service temperatures and they also increase the stiffness, tensile strength, ductility, and elastic recovery of the final products. Melt viscosities at processing temperatures remain relatively low so the materials are still easy to apply. As the polymer concentration is increased to about 5%, an interconnected polymer network is formed. At this point the nature of the mixture changes from an asphalt modified by a polymer to a polymer extended with an asphalt. [Pg.19]

Where transparency is required, a range of polymers is available. Polystyrene is the least expensive but polymethylmethacrylate has an outstanding high light transmission combined with excellent weathering properties. Also to be considered are the polycarbonates, glass-clear polyamides, SAN, butadiene-styrene block copolymers, MBS polymers, plasticised PVC, ionomers and cellulose esters such as cellulose acetate. [Pg.896]

High-impact grades present better impact resistances even at low temperature, higher flexibility and environmental stress cracking resistance (ESCR). The butadiene-styrene block copolymers are transparent but the alloys made of polystyrene and polybutadiene are not. [Pg.338]

Sulfonation is very useful chemical modification of polymer, as it induces high polarity in the polymer changing its chemical as well as physical properties. Sulfonated polymers are also important precursors for ionomer formation [75]. There are reports of sulfonation of ethylene-propylene diene terpolymer (EPDM) [76, 77], polyarylene-ether-sulfone [78], polyaromatic ether ketone [79], polyether ether ketone (PEEK) [80], styrene-ethylene-butylene-styrene block copolymer, (SEBS) [81]. Poly [bis(3-methyl phenoxy) phosphozene] [82], Sulfonated polymers show a distinct peak at 1176 cm"1 due to stretching vibration of 0=S=0 in the -S03H group. Another peak appears at 881 cm 1 due to stretching vibration of S-OH bond. However, the position of different vibrational bands due to sulfonation depends on the nature of the cations as well as types of solvents [75, 76]. [Pg.147]

Other rubber systems have been commercially successful. Styrene block copolymers yield a HIPS product with a small particle size and provide high gloss. A mixed rubber system consisting of styrene-butadiene block rubber and/or ethylene-propylene diene modified (EPDM) rubber can be blended with the polybutadiene to form bimodal rubber particle size distribution for a... [Pg.257]

Albert Einstein said that it is good to make things as simple as possible, but not simpler. Beneath each simple statement about the properties of styrene block copolymers lie volumes of books, thousands of patents and countless pages of paper and electronic files dedicated to describing and understanding these highly useful polymers, and their applications. The task becomes reducing all of this to simple ideas, simple pictures and simple words, but not simpler . [Pg.474]

S/DPE copolymers can also be impact modified using triblock copolymers having as the centre block the rubber phase [6]. Typical examples are styrene-butadiene-styrene block copolymers where the butadiene phase is preferably hydrogenated S-B(H)-S, to remove the double bonds. This is advisable owing to the high processing temperatures involved in the S/DPE processing. [Pg.596]

The resulting TPE can either be used alone or blended with aliphatic oil and polypropylene. In the former case a higher tensile strength and elongation at break are obtained in comparison with the commercially available styrene-hydrogenated butadiene-styrene block copolymers, especially at high temperatures. [Pg.601]

When a block copolymer is blended with a homopolymer that differs in composition from either block the usual result is a three-phase structure. Miscibility of the various components is not necessarily desirable. Thus styrene-butadiene-styrene block copolymers are recommended for blending with high density polyethylene to produce mixtures that combine the relative high melting behavior of the polyolefin with the good low temperature properties of the elastomeric midsections of the block polymers. [Pg.477]


See other pages where High styrene block copolymers is mentioned: [Pg.231]    [Pg.419]    [Pg.186]    [Pg.13]    [Pg.483]    [Pg.514]    [Pg.728]    [Pg.734]    [Pg.743]    [Pg.148]    [Pg.93]    [Pg.207]    [Pg.304]    [Pg.318]    [Pg.237]    [Pg.419]    [Pg.231]    [Pg.13]    [Pg.313]    [Pg.352]    [Pg.295]    [Pg.21]    [Pg.150]    [Pg.418]    [Pg.471]    [Pg.474]    [Pg.475]    [Pg.493]    [Pg.789]    [Pg.231]    [Pg.18]    [Pg.368]   


SEARCH



Block styrenic

Styrene block

Styrene block copolymers

Styrene-copolymers

© 2024 chempedia.info