Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclear multiple bond coherence spectroscopy

For smaller quantities of compounds more sensitive inverse detected techniques are available, such as HMQC ( IH-I C one bond correlation via heteronuclear multiple quantum coherence, analogous to HETCOR) and HMBC (proton detected heteronuclear multiple bond correlation spectroscopy) (15). The last provide, in addition to the intraresidue multiple bond correlations, interresidue correlations between the anomeric carbon and the aglycone protons.We follow this general strategy for the structural determination of tri terpenoid saponins of Bupleurum fruticosum (16) andArdisia japonica (9). [Pg.117]

H homonuclear correlation spectroscopy (COSY). The connection between the benzyltetraisoquinoline and pavine moieties in 66 was located at C-10 and C-7 through an ether bridge as a result of the unambiguous assignments of H and 13C NMR signals by the heteronuclear multiple-bond quantum coherence (HMQC) and heteronuclear multiple-bond coherence (HMBC) NMR techniques. The EIMS of 66 confirmed the presence of a hydroxybenzyl moiety due to the observed complementary peaks at m/z 545 and 107 [11]. Furthermore, the structure of 66 was substantiated by the formation of herveline C (68) after 66 was treated with diazomethane in ethyl ether solution overnight [11]. [Pg.584]

Bax A, Davis DG (1985) MLEV-17 Based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65 355-360 Bax A, Drobny G (1985) Optimization of two-dimensional homonuclear relayed coherence transfer NMR spectroscopy. J Magn Reson 61 306-320 Bax A, Marion D (1988) Improved resolution and sensitivity in H-detected heteronuclear multiple-bond correlation spectroscopy. J Magn Reson 78 186-191 Bax A, Subramanian S (1986) Sensitivity-enhanced two-dimensional heteronuclear chemical shift correlation NMR spectroscopy. J Magn Reson 67 565-569 Bax A, Summers MF (1986) and Assignments from sensitivity-enhanced detection of heteronuclear multiple bond connectivity by 2D multiple-quantum NMR. J Am Chem Soc 108 2093-2094... [Pg.84]

Thiophene A and thiophene A diol are the major polyacetylenes isolated from the hairy root of Ambrosia maritima L. (Asteraceae) [293]. Their chemical structures were determined by mass spectroscopy and using DEPT 135, HMQC (heteronuclear multiple quantum coherence), and HMBC (heteronuclear multiple bond coherence) NMR experiments (Figure 5.79). [Pg.488]

ACF = atom-centered fragment AI = artificial intelligence BAM = bond adjacency matrix CHEMICS = combined handling elucidation method for interpretable chemical structures COSY = correlated spectroscopy FBMX = free-bond connection matrix HMBC = heteronuclear multiple bond correlation spectroscopy HMQC = heteronuclear multiple quantum coherence correlation spectroscopy SESAMI = systematic elucidation of structure applying machine intelligence. [Pg.2786]

A complex, multiply bridged 1,2,3,4-adduct of C60 (168) (Scheme 1.11) including a noninherently chiral addition pattern as well as a multitude of stereogenic centers in the addend moiety was obtained in a tandem reaction between the alkaloid scandine and Ceo-324 The sequence included a photoin-duced addition of the tertiary amine subunit of the alkaloid and a [2 + 2] cycloaddition of its vinyl group to the adjacent intrahexagonal formal double bond of the fullerene. The structural elucidation included 1H-1 H COSY-, HMQC- (heteronuclear multiple quantum coherence), HMBC-, and ROESY-(rotating frame Overhauser enhancement spectroscopy) NMR experiments and... [Pg.74]

The main emphasis of current carbohydrate structural analysis is the applicability of modern multi-dimensional NMR for solving the two crucial problems in complex carbohydrate structural analysis, namely, the elucidation of the sequence of glycosyl residues and the solution conformation and dynamics of a carbohydrate (150). Techniques include 2D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser effect spectroscopy (NOESY), rotational nuclear Overhauser effect spectroscopy (ROES Y),hetero-nuclear single quantum coherence (HSQC), heteronuclear multiple quantum correlation (HMQC), heteronuclear multiple bond correlation (HMBC), and (pseudo) 3D and 4D extensions. [Pg.232]

NMR is the tool most widely used to identify the structure of triterpenes. Different one-dimension and two-dimension techniques are usually used to study the structures of new compounds. Correlation via H-H coupling with square symmetry ( H- H COSY), homonuclear Hartmann-Hahn spectroscopy (HOHAHA), heteronuclear multiple quantum coherence (HMQC), heteronuclear multiple bond correlation (HMBC), distortionless enhancement by polarisation transfer (DEPT), incredible natural abundance double quantum transfer experiment (INADEQUATE) and nuclear Overhauser effect spectroscopy (NOESY) allow us to examine the proton and carbon chemical shift, carbon types, coupling constants, carbon-carbon and proton-carbon connectivities, and establish the relative stereochemistry of the chiral centres. [Pg.109]

FIGURE 8.2. Flowchart for structure elucidation of purified compounds. DEPT Distortionless Enhancement by Polarization Transfer, HMBC Heteronuclear Multiple Bond Correlation, HSQC Heteronuclear Single Quantum Coherence, HMQC Heteronuclear Multiple Quantum Correlation, DQF-CQSY Double Quantum Filtered Correlated Spectroscopy and NOSEY Nuclear Overhauser effect spectroscopy. [Pg.177]


See other pages where Heteronuclear multiple bond coherence spectroscopy is mentioned: [Pg.397]    [Pg.552]    [Pg.397]    [Pg.552]    [Pg.10]    [Pg.428]    [Pg.66]    [Pg.138]    [Pg.131]    [Pg.2795]    [Pg.259]    [Pg.64]    [Pg.180]    [Pg.181]    [Pg.290]    [Pg.764]    [Pg.259]    [Pg.437]    [Pg.316]    [Pg.552]    [Pg.909]    [Pg.156]    [Pg.138]    [Pg.191]    [Pg.705]    [Pg.741]    [Pg.435]    [Pg.267]    [Pg.466]    [Pg.549]    [Pg.173]    [Pg.140]   
See also in sourсe #XX -- [ Pg.552 ]




SEARCH



Coherence spectroscopy

Heteronuclear multiple bond coherence

Heteronuclear multiple-bond

Multiple heteronuclear

Spectroscopy heteronuclear multiple-bond

© 2024 chempedia.info