Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalysts, deposition

Supported aqueous phase (SAP) catalysts (16) employ an aqueous film of TPPTS or similar ligand, deposited on a soHd support, eg, controlled pore glass. Whereas these supported catalysts overcome some of the principal limitations experienced using heterogeneous catalysts, including rhodium leaching and rapid catalyst deactivation, SAP catalysts have not found commercial appHcation as of this writing. [Pg.469]

Sulfur is widely distributed as sulfide ores, which include galena, PbS cinnabar, HgS iron pyrite, FeS, and sphalerite, ZnS (Fig. 15.11). Because these ores are so common, sulfur is a by-product of the extraction of a number of metals, especially copper. Sulfur is also found as deposits of the native element (called brimstone), which are formed by bacterial action on H,S. The low melting point of sulfur (115°C) is utilized in the Frasch process, in which superheated water is used to melt solid sulfur underground and compressed air pushes the resulting slurry to the surface. Sulfur is also commonly found in petroleum, and extracting it chemically has been made inexpensive and safe by the use of heterogeneous catalysts, particularly zeolites (see Section 13.14). One method used to remove sulfur in the form of H2S from petroleum and natural gas is the Claus process, in which some of the H2S is first oxidized to sulfur dioxide ... [Pg.754]

Finally, a second area of research for nanoparticles is their immobihza-tion on various supports. The deposition of well-defined nanoparticles on a support by different methods should advantageously replace traditional heterogeneous catalysts in terms of activity and selectivity. [Pg.277]

Typically, the Pd species for Heck couplings are homogeneous catalysts, stabilized by air-sensitive ligands. They present economic and environmental problems regarding separation, regeneration and reuse. These difficulties can be diminished with heterogeneous catalysts that are more easily recoverable from the reaction mixture. As mentioned in Sect. 2.6, a catalyst consisting of palladium metal deposited on por-... [Pg.54]

In contrast to a mixture of redox couples that rapidly reach thermodynamic equilibrium because of fast reaction kinetics, e.g., a mixture of Fe2+/Fe3+ and Ce3+/ Ce4+, due to the slow kinetics of the electroless reaction, the two (sometimes more) couples in a standard electroless solution are not in equilibrium. Nonequilibrium systems of the latter kind were known in the past as polyelectrode systems [18, 19]. Electroless solutions are by their nature thermodyamically prone to reaction between the metal ions and reductant, which is facilitated by a heterogeneous catalyst. In properly formulated electroless solutions, metal ions are complexed, a buffer maintains solution pH, and solution stabilizers, which are normally catalytic poisons, are often employed. The latter adsorb on extraneous catalytically active sites, whether particles in solution, or sites on mechanical components of the deposition system/ container, to inhibit deposition reactions. With proper maintenance, electroless solutions may operate for periods of months at elevated temperatures, and exhibit minimal extraneous metal deposition. [Pg.228]

Steam reforming is a heterogeneously catalyzed process, with nickel catalyst deposited throughout a preformed porous support. It is empirically observed in the industry, that conversion is proportional to the geometric surface area of the catalyst particles, rather than the internal pore area. This suggests that the particle behaves as an egg-shell type, as if all the catalytic activity were confined to a thin layer at the external surface. It has been demonstrated by conventional reaction-diffusion particle modelling that this behaviour is due to... [Pg.372]

Heterogeneous catalysts are readily obtained when pre-prepared nanometal colloids are deposited on supports [20], The so-called precursor concept for manufacture of heterogeneous... [Pg.74]

We are developing a new method for preparing heterogeneous catalysts utilizing polyamidoamine (PAMAM) dendrimers to template metal nanoparticles. (1) In this study, generation 4 PAMAM dendrimers were used to template Pt or Au Dendrimer Encapsulated Nanoparticles (DENs) in solution. For Au nanoparticles prepared by this route, particle sizes and distributions are particularly small and narrow, with average sizes of 1.3 + 0.3 nm.(2) For Pt DENs, particle sizes were around 2 nm.(3) The DENs were deposited onto silica and Degussa P-25 titania, and conditions for dendrimer removal were examined. [Pg.315]

W. Keim, B. Dreissen-Holscher, Supported catalysts. Deposition of active component. Heterogenization of complexes and enzymes, in G. Ertl, H. Knoezinger, J. Weitkamp (Eds.), Preparation of Solid Catalysts, Wiley-VCH, Weinheim, 1999, p. 355. [Pg.297]

Both heterogeneous and homogeneous disproportionation catalysts are known. All contain a transition metal component with derivatives of Mo, W, and Re being the most important. Heterogeneous catalysts are generally metal oxides deposited on a support such as silica or alumina (1, 4). Homogeneous catalysts in general require a non-transition metal derivative as cocatalyst (2, 3). [Pg.202]


See other pages where Heterogeneous catalysts, deposition is mentioned: [Pg.658]    [Pg.658]    [Pg.193]    [Pg.558]    [Pg.185]    [Pg.264]    [Pg.117]    [Pg.118]    [Pg.37]    [Pg.113]    [Pg.914]    [Pg.243]    [Pg.169]    [Pg.497]    [Pg.49]    [Pg.549]    [Pg.8]    [Pg.71]    [Pg.85]    [Pg.97]    [Pg.42]    [Pg.98]    [Pg.255]    [Pg.97]    [Pg.557]    [Pg.179]    [Pg.428]    [Pg.82]    [Pg.94]    [Pg.148]    [Pg.223]    [Pg.177]    [Pg.179]    [Pg.182]    [Pg.184]    [Pg.316]    [Pg.428]    [Pg.620]    [Pg.674]    [Pg.699]   
See also in sourсe #XX -- [ Pg.944 , Pg.945 , Pg.947 , Pg.989 ]




SEARCH



Catalyst deposits

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Heterogeneous deposition

Heterogenized catalysts

© 2024 chempedia.info