Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic aldehydes, reaction with amines

By carrying out the Ugi-reaction with a large number of isonitrils, aldehydes, carboxylic acids, and amines, it was found that formation of different products of the reaction occurred depending on the structure of the amines used. Thus, 3-aminoimidazoles 88 were isolated when aldehyde reacted with isocyanide and heterocyclic aromatic 2-aminoazine as primary amine (Scheme 38). [Pg.67]

A vast array of piperidine containing cores, both natural and synthetic, are of biological and medicinal interest. These heterocyclic scaffolds have been the subjects of considerable synthetic efforts, especially for the construction of optically active compounds. In this context, Khan et al. reported a catalytic bromodi-methylsulfonium bromide (BDMS) three-component reaction of 1,3-dicarbonyls with aromatic aldehydes and aromatic amines for a facile access to highly functionalized piperidines (Scheme 24) [104]. This strategy is an interesting illustration of... [Pg.242]

The cycloaddition of diazomethane to SchifT bases from heterocyclic aldehydes and anilines provides a useful route to heterocyclic substituted triazolines. Unlike olefins bearing heterocyclic substituents, the heterocyclic imines can be obtained readily by reaction of the appropriate aldehyde and amine thus the diazomethane-imine addition has greater scope than the olefin-azide reaction. NMR spectroscopic studies of the orientation of addition are in accord with previously reported mechanistic considerations (see, e.g., Scheme 93).329 In addition to the influence of the N-aryl group, the electron-withdrawing power of the heterocyclic substituent on the Schiff-base carbon also has a substantial effect on imine reactivity, in the order 2-quinolyl 2-, 3-, or 4-pyridyl > phenyl > 2-thienyl as 2-furyl.329... [Pg.282]

N-Heterocyclics. The reaction of primary amines with the carbonyl products derived from lipid oxidation is a major pathway in lipid-protein interactions. Formation of Schiff s base intermediates followed by cyclization and rearrangement can yield imines, pyridines and pyrroles (5,15,30,31). For example, 2-pentylpyridine may result from the reaction of ammonia with 2,4-decadienal, one of the principle aldehydes from the autoxidation of linoleate (5). [Pg.98]

Three-component reactions of aldehydes, amines, and allyltributyltin also proceeded smoothly in micellar systems with Sc(OTf)3 as Lewis acid catalyst, to afford the corresponding homoallylic amines in high yields (Eq. 19) [68]. Not only aromatic aldehydes but also aliphatic, unsaturated, and heterocyclic aldehydes worked well. The procedure is very simple—merely mixing an aldehyde, an amine, and allyltributyltin in the presence of Sc(OTf)3 and SDS in water no homoallylic alcohol (an adduct between an aldehyde and allyltributyltin) was produced. It was suggested that imine formation from aldehydes and amines was very fast under these conditions, and that the selective activation of imines rather than aldehydes was achieved. [Pg.898]

A two-step synthesis of 1,4-disubstituted imidazoles (8) from TOSMIC (1) plus an aldehyde, followed by reaction with ammonia or a primary amine, proceeds via a 4-tosyloxazoline (11). The reaction sequence could be classified as 1,2 and 1,5 bond formation, 1,5 bond formation, or transformation of another heterocycle. There are, however, analogies to the aldimine reactions, and so the process is detailed at this stage. Certainly the synthesis is carried out in two steps often with isolation of the oxazoline (see also Chapter 6). Heating (11) with a saturated solution of methanolic ammonia gives a 4-substituted imidazole with methanolic methylamine a 1,4-disubstituted product is isolated as a single regioisomer (Scheme 4.2.4). Some of the oxazolines cannot be isolated as they are unstable oils which have to be heated immediately with the amino compound [12]. Related is the synthesis of 2-carbamoyl-4-(2 -deoxy- 0-D-ribofuranosyl)imidazole [13]. [Pg.125]

The Maillard reaction and the oxidation of lipids are two of the most important reactions for the formation of aromas in cooked foods. Interactions between lipid oxidation and the Maillard reaction have received less attention, despite the fact that lipids, sugars, and amino acids exist in close proximity in most foods. Lipids, upon exposure to heat and oxygen, are known to decompose into secondary products, including alcohols, aldehydes, ketones, carboxylic acids, and hydrocarbons. Aldehydes and ketones produce heterocyclic flavor compounds reacting with amines and... [Pg.240]

Condensation reactions can be grouped into two categories. The first category involves pyrazol-3-ones with formyl, acyl, nitroso, a,jS-unsaturated oxo, 3-oxo-2-azobutyric acid ethyl ester or acetonitrile substituents at position 4 or formyl substituents at position 5 and their reaction with carbanions, heterocyclic methylcarbenium salts, primary and secondary amines, diamines, heterocyclic perchlorates, hydroxylamine, hydrazines, urea or thiosemicarbazide. The second category involves pyrazol-3-ones with amino, hydrazino, heteroaromatic amino, acetyl or acetonitiilo groups at position 4 and their reaction with aryl or heteroaromatic aldehydes or cyclic ketones. [Pg.46]

Direct IV-oxidation of these heterocycles invariably fails (see Section 3.02.7.2.8), making ring synthetic methods the only viable alternative <93CHE127>. Although there has been considerable interest in the chemistry of compounds of this type, there are no new synthetic approaches of a general nature. The most common approach is to react a-oximinoketones with aldehydes and primary amines. With formaldehyde, however, the 2-unsubstituted 1-oxides rearrange to 2-imi-dazolones. Variations on this theme allow synthesis of 1-hydroxyimidazole 3-oxides. Thus, treatment of an a-dicarbonyl compound with an aldehyde and hydroxylamine, or reaction of the aldehyde oxime or aldehyde with a 1,2-dioxime are common approaches <898773 >. Similarly, a-hydroxyamino-... [Pg.218]


See other pages where Heterocyclic aldehydes, reaction with amines is mentioned: [Pg.33]    [Pg.36]    [Pg.28]    [Pg.656]    [Pg.357]    [Pg.700]    [Pg.268]    [Pg.49]    [Pg.48]    [Pg.739]    [Pg.376]    [Pg.243]    [Pg.291]    [Pg.1192]    [Pg.114]    [Pg.124]    [Pg.656]    [Pg.515]    [Pg.191]    [Pg.283]    [Pg.291]    [Pg.192]    [Pg.85]    [Pg.209]    [Pg.149]    [Pg.18]    [Pg.913]    [Pg.99]    [Pg.656]    [Pg.396]    [Pg.397]    [Pg.468]    [Pg.556]    [Pg.266]    [Pg.483]    [Pg.599]    [Pg.263]    [Pg.95]    [Pg.343]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Aldehydes amination

Aldehydes heterocyclic

Aldehydes reaction with amines

Aldehydes with amines

Amination reactions aldehydes

Aminations aldehydes

Amines aldehydes

Heterocycles amination

Heterocycles reaction

Heterocyclic aldehydes, reaction with

Heterocyclic amines, reactions

Heterocyclization reactions

Reaction with amines

Reaction with heterocycles

© 2024 chempedia.info