Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic aldehydes, reaction with

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

This procedure is representative of a new general method for the preparation of noncyclic acyloins by thiazol ium-catalyzed dimerization of aldehydes in the presence of weak bases (Table I). The advantages of this method over the classical reductive coupling of esters or the modern variation in which the intermediate enediolate is trapped by silylation, are the simplicity of the procedure, the inexpensive materials used, and the purity of the products obtained. For volatile aldehydes such as acetaldehyde and propionaldehyde the reaction Is conducted without solvent in a small, heated autoclave. With the exception of furoin the preparation of benzoins from aromatic aldehydes is best carried out with a different thiazolium catalyst bearing an N-methyl or N-ethyl substituent, instead of the N-benzyl group. Benzoins have usually been prepared by cyanide-catalyzed condensation of aromatic and heterocyclic aldehydes.Unsymnetrical acyloins may be obtained by thiazol1um-catalyzed cross-condensation of two different aldehydes. -1 The thiazolium ion-catalyzed cyclization of 1,5-dialdehydes to cyclic acyloins has been reported. [Pg.173]

Heterocyclic enamines A -pyrroline and A -piperideine are the precursors of compounds containing the pyrrolidine or piperidine rings in the molecule. Such compounds and their N-methylated analogs are believed to originate from arginine and lysine (291) by metabolic conversion. Under cellular conditions the proper reaction with an active methylene compound proceeds via an aldehyde ammonia, which is in equilibrium with other possible tautomeric forms. It is necessary to admit the involvement of the corresponding a-ketoacid (12,292) instead of an enamine. The a-ketoacid constitutes an intermediate state in the degradation of an amino acid to an aldehyde. a-Ketoacids or suitably substituted aromatic compounds may function as components in active methylene reactions (Scheme 17). [Pg.295]

In the case of the bases derived from quaternary heterocyclic ammonium salts, the carbinolamines (5) can react as cyclic aldehyde-ammonias with many reagents with which the amino-aldehyde (7) could react. However, reactions of the carbinolamines which are not characteristic of amino-aldehydes are also known. Carbinolamines can easily be reconverted into the quaternary salts by the action of dilute acids, and they form alkyl ethers very easily with alcohols. If these last reactions do not occur, then this is convincing evidence for the base possessing the amino-aldehyde structure. However, if these reactions do occur this does not provide unambiguous confirmation of the carbinolamine structure. They are also given by the bi-molecular ethers (8), and, in the case of a tautomeric equilibrium... [Pg.173]

Propiolaldehyde diethyl acetal has found numerous synthetic applications in the literature which may be briefly summarized. The compound has been utilized in the synthesis of unsaturated and polyunsaturated acetals and aldehydes by alkylation of metal-lated derivatives, " by Cadiot-Chodkiewicz coupling with halo acetylenes, " and by reaction with organocuprates. Syntheses of heterocyclic compounds including pyrazoles, isoxazoles, triazoles, and pyrimidines have employed this three-carbon building block. Propiolaldehyde diethyl acetal has also been put to use in the synthesis of such natural products as polyacetylenes " and steroids. ... [Pg.8]

Synthesis of 2-heterocyclic thiosemicarbazones can be summarized in three reaction sequences following the lead of Klayman et al. [5]. Condensation of equimolar quantities of a thiosemicarbazide and a 2-heterocyclic aldehyde or ketone in an alcoholic solvent is represented by Eq. (1). The product s superscripts refer to positions of substitution in the thiosemicarbazone moiety in accord with lUPAC. [Pg.10]

Entry 10 was used in conjunction with dihydroxylation in the enantiospecific synthesis of polyols. Entry 11 illustrates the use of SnCl2 with a protected polypropionate. Entries 12 and 13 result in the formation of lactones, after MgBr2-catalyzed additions to heterocyclic aldehyde having ester substituents. The stereochemistry of both of these reactions is consistent with approach to a chelate involving the aldehyde oxygen and oxazoline oxygen. [Pg.850]

Kovacs-Hadady and Kiss [27] studied the chromatographic characteristics of thia-zolidinecarboxylic acid derivatives, formed by reaction of (i>) and (L)-penicillamine with various substituted benzaldehydes and heterocyclic aldehydes in order to evaluate the aldehydes as derivatizing agents for separation of the penicillamine enantiomers. The TLC method of Martens et al. [28] was used. Transformation to thiazolidine carboxylic acids with benzaldehyde and substituted benzaldehydes was not complete, so formaldehyde is still the preferred reagent for separation of the enantiomers. [Pg.137]

The second characteristic reaction catalyzed by palladium catalysts is cocyclization of butadiene with the C=0 bonds of aldehydes and the C=N bonds of isocyanates and Schiff bases to form six-membered heterocyclic compounds (19) with two vinyl groups, as expressed by the following general scheme ... [Pg.146]

Other aromatic heterocycles undergo Patemo-Btichi reaction with carbonyl compounds, although these reactions have seldom been applied to organic synthesis. For example, thiophene reacts cleanly with benzaldehyde to afford a single exo product in 63% yield87. Pyrroles also react with aldehydes and ketones however, as a result of the lability of the presumed initial cycloadducts, the only products isolated, even with the rigorous exclusion of acid, are the 3-hydroxyalkylpyrroles 200 (equation 7)89. [Pg.305]

Mechanisms involving glycol bond fission have been proposed for the oxidation of vicinal diols, and hydride transfer for other diols in the oxidation of diols by bromine in acid solution.The kinetics of oxidation of some five-ring heterocyclic aldehydes by acidic bromate have been studied. The reaction of phenothiazin-5-ium 3-amino-7-dimethylamino-2-methyl chloride (toluidine blue) with acidic bromate has been studied. Kinetic studies revealed an initial induction period before the rapid consumption of substrate and this is accounted for by a mechanism in which bromide ion is converted into the active bromate and hyperbromous acid during induction and the substrate is converted into the demethylated sulfoxide. [Pg.231]

Radical cyclization of polyfunctional 5-hexenyl halides mediated by Et2Zn and catalyzed by nickel or palladium salts has been demonstrated to produce stereoselectively polyfunctional 5-membered carbo- and heterocycles [56, 57]. Based on this strategy a formal synthesis of methylenolactocin (11) was achieved (Scheme 20). The acetal 130, readily being built up by asymmetric alkylation of aldehyde 127 followed by reaction with butyl vinyl ether and NBS, served as the key intermediate for the construction of the lactone ring. Nickel(II)-catalyzed carbometallation was initiated with diethylzinc to yield exclusively the frans-disubstituted lactol 132, which could be oxidized directly by air to 134. Final oxidation under more forcing conditions then yielded the lactone (-)-75 as a known intermediate in the synthesis of (-)-methylenolactocin (11) [47aj. [Pg.61]

Interesting reagents for such MCRs from the viewpoint of selectivity tuning are 5-aminopyrazoles containing carboxamide substituent. In the first article concerning the behavior of these aminozoles in the reactions with cyclic 1,3-diketone and aldehydes, it was found that only one direction of the treatment leads to tricyclic Biginelli-like heterocycles 61 (Scheme 30) [96]. [Pg.61]

By carrying out the Ugi-reaction with a large number of isonitrils, aldehydes, carboxylic acids, and amines, it was found that formation of different products of the reaction occurred depending on the structure of the amines used. Thus, 3-aminoimidazoles 88 were isolated when aldehyde reacted with isocyanide and heterocyclic aromatic 2-aminoazine as primary amine (Scheme 38). [Pg.67]


See other pages where Heterocyclic aldehydes, reaction with is mentioned: [Pg.225]    [Pg.477]    [Pg.28]    [Pg.88]    [Pg.219]    [Pg.357]    [Pg.65]    [Pg.1197]    [Pg.65]    [Pg.223]    [Pg.12]    [Pg.727]    [Pg.260]    [Pg.268]    [Pg.29]    [Pg.68]    [Pg.223]    [Pg.322]    [Pg.49]    [Pg.466]    [Pg.656]    [Pg.48]    [Pg.739]    [Pg.468]    [Pg.50]    [Pg.376]    [Pg.94]    [Pg.242]    [Pg.243]    [Pg.248]   


SEARCH



Aldehydes heterocyclic

Heterocycles reaction

Heterocyclic aldehydes, reaction with amines

Heterocyclization reactions

Reaction with heterocycles

© 2024 chempedia.info