Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Henry enantioselective

The condensation of nitro compounds and imines, the so-called aza-Henry or nitro-Mannich reaction, has recently emerged as a powerful tool for the enantioselective synthesis of 1,2-diamines through the intermediate /3-amino nitro compounds. The method is based on the addition of a nitronate ion (a-nitro carbanion), generated from nitroalkanes, to an imine. The addition of a nitronate ion to an imine is thermodynamically disfavored, so that the presence of a protic species or a Lewis acid is required, to activate the imine and/or to quench the adduct. The acidic medium is compatible with the existence of the nitronate anion, as acetic acid and nitromethane have comparable acidities. Moreover, the products are often unstable, either for the reversibility of the addition or for the possible /3-elimination of the nitro group, and the crude products are generally reduced, avoiding purification to give the desired 1,2-diamines. Hence, the nitronate ion is an equivalent of an a-amino carbanion. [Pg.16]

Recently, enantioselective organo-catalytic procedures for the aza-Henry reaction have been disclosed. The presence of either an acidic or a basic function appears to be a requisite of the catalyst. In fact, the condensation of ni-tromethane with M-phosphinoyl arylimines 72 is catalyzed by the chiral urea 85 derived from (R,R)-l,2-diaminocyclohexane and gives the product (R)-74 with good yield and moderate enantioselectivity (Scheme 15) [50]. The N-phosphinoyl substituent is determinant, as the addition of nitromethane to the N-phenyl benzaldimine failed and the reaction of the N-tosyl ben-zaldimine gave the expected adduct with quantitative yield but almost no... [Pg.18]

Scheme 15 Organo-catalytic enantioselective aza-Henry reactions... Scheme 15 Organo-catalytic enantioselective aza-Henry reactions...
An enantioselective aza-Henry reaction catalysed by the same bifimctional organocatalyst was recently reported by the same group (Scheme 47) [163]. [Pg.262]

In the very recent past, metal complex catalysis has been used with advantage for the stereo- and enantio selective syntheses based on the Henry and Michael reactions with SENAs (454-458). The characteristic features of these transformations can be exemplified by catalysis of the reactions of SENAs (327) with functionalized imides (328) by ligated trivalent scandium complexes or mono-and divalent copper complexes (454) (Scheme 3.192). Apparently, the catalyst initially forms a complex with imide (328), which reacts with nitronate (327) to give the key intermediate A. Evidently, diastereo- and enantioselectivity of the process are associated with preferable transformations of this intermediate. [Pg.613]

The application of this approach to the enantioselective classical Henry reaction with SENAs (327) is exemplified in Scheme 3.193 (455). [Pg.614]

Reactions where NLE have been discovered include Sharpless asymmetric epoxi-dation of allylic alcohols, enantioselective oxidation of sulfides to sulfoxides, Diels-Alder and hetero-Diels-Alder reactions, carbonyl-ene reactions, addition of MesSiCN or organometallics on aldehydes, conjugated additions of organometal-lics on enones, enantioselective hydrogenations, copolymerization, and the Henry reaction. Because of the diversity of the reactions, it is more convenient to classify the examples according to the types of catalyst involved. [Pg.213]

The Michael reaction of malonates to nitroolefins and the aza-Henry reaction of nitroalkanes to Al-phosphinoylimines are catalyzed by thiourea derivative 5a to provide the respective products in good and moderate enantioselectivities. Thiourea... [Pg.360]

Nitroaldol (Henry) reactions of nitroalkanes and a carbonyl were investigated by Hiemstra [76], Based on their earlier studies with Cinchona alkaloid derived catalysts, they were able to achieve moderate enantioselectivities between aromatic aldehydes and nitromethane. Until then, organocatalyzed nitroaldol reactions displayed poor selectivities. Based on prior reports by Sods [77], an activated thionrea tethered to a Cinchona alkaloid at the quinoline position seemed like a good catalyst candidate. Hiemstra incorporated that same moiety to their catalyst. Snbsequently, catalyst 121 was used in the nitroaldol reaction of aromatic aldehydes to generate P-amino alcohols in high yield and high enantioselectivities (Scheme 27). [Pg.167]

Takemoto et al. discovered N-phosphinoyl-protected aldimines as suitable electrophilic substrates for the enantioselective aza-Henry [224] (nitro-Mannich) reaction [72] with nitromethane, when utilizing thiourea 12 (10mol%) as the catalyst in dichloromethane at room temperature [225]. The (S)-favored 1,2-addition of nitromethane to the electron-deficient C=N double bond allowed access to various P-aryl substituted N-phosphinoyl-protected adducts 1-5 in consistently moderate to good yields (72-87%) and moderate enantioselectivities (63-76%) as depicted in Scheme 6.73. Employing nitroethane under unchanged reaction conditions gave adduct 6 as a mixture of diastereomers (dr 73 27) at an ee value of 67% (83% yield) of the major isomer (Scheme 6.73). [Pg.218]

Scheme 6.73 Typical products of the enantioselective aza-Henry (nitro-Mannich) reaction between nitroalkanes and N-phosphinoylimines proceeding in the presence of catalyst 12. Scheme 6.73 Typical products of the enantioselective aza-Henry (nitro-Mannich) reaction between nitroalkanes and N-phosphinoylimines proceeding in the presence of catalyst 12.
Ricci and co-workers published a protocol for the enantioselective aza-Henry reaction [224] of N-protected aldimines with nitromethane in the presence of C9-epi-quinine thiourea 121 [8]. The reaction was ophmized for 20mol% loading of... [Pg.270]

For the model Henry reaction between benzaldehyde and nitromethane a solvent dependency of the enantioselectivity was detected (e.g., CH2CI2 6% ee MeOH 49% ee THF 62% ee aU at rt). Under optimized reaction conditions concerning catalyst loading (10 mol% of 131), solvent (TH F), and reaction temperature... [Pg.286]

The catalyst screening experiments were performed in the asymmetric Henry addition of nitromethane (10 equiv.) to 4-nitrobenzaldehyde in the presence of DABCO (20mol %) as the base and (thio)ureas 157, 158, 163, and 170-175 (each 10mol% loading). After 12h in reaction time at room temperature and in THF as the solvent, the corresponding Henry adduct was obtained in excellent yields (99%) but with very low ee values (7-17%) nearly independently of the sterical hindrance of the axiaUy chiral backbone skeleton (e.g., 172 and 174 each 99% yield 11% ee). Thioureas appeared slightly more enantioselective (e.g., 163 83% yield, 33% ee 171 99% yield, 15% ee) than their urea counterparts probably due... [Pg.304]

Scheme 6.161 Product range for the 163-catalyzed enantioselective Henry reaction of arylaldehydes with nitromethane. Scheme 6.161 Product range for the 163-catalyzed enantioselective Henry reaction of arylaldehydes with nitromethane.
Scheme 6.167 Proposed transition-state models for the enantioselective Henry (nitroaldol) reaction in the presence of (S,S)-configured catalyst 183 TS 1 anti, anti conformation TS 2 gauche-onfi conformation TS 3 gauche-onfi conformation. Scheme 6.167 Proposed transition-state models for the enantioselective Henry (nitroaldol) reaction in the presence of (S,S)-configured catalyst 183 TS 1 anti, anti conformation TS 2 gauche-onfi conformation TS 3 gauche-onfi conformation.
Scheme 6.169 Screening reaction to identify (R,R)-configured guanidine-thiourea 186 as matching catalyst for the anti-diastereoselective and enantioselective Henry reaction of (S)-a-amino aldehydes with nitromethane. Scheme 6.169 Screening reaction to identify (R,R)-configured guanidine-thiourea 186 as matching catalyst for the anti-diastereoselective and enantioselective Henry reaction of (S)-a-amino aldehydes with nitromethane.
In 2008, Tang and co-workers reported the utilization of tertiary amine-functionalized saccharide-thiourea 211 as a bifunctional hydrogen-bonding catalyst for the enantioselective aza-Henry [224] (nitro-Mannich) addition [72] of... [Pg.323]

It was also reported that diastereo- and enantioselective Mannich reactions of activated carbonyl compounds with a-imino esters were catalyzed by a chiral Lewis acid derived from Cu(OTf)2 and a bisoxazoline (BOX) ligand [31] [(Eq. (6)]. Catalytic enantioselective addition of nitro compounds to imines [32], and aza-Henry reactions of nitronates with imines [33] also proceeded under similar reaction conditions. [Pg.146]

A cheap and efficient enantioselective aza-Henry reaction of nitromethane with a variety of A-protected arylaldimines has been reported.73 Using zinc triflate and (-)-A-methylephedrine at -20 °C, yields and ees of up to 99% have been achieved with wide tolerance of aryl substituent in terms of both electronic nature and position. The auxiliary is also easily recycled. [Pg.11]

The catalytic asymmetric Henry reaction has been reviewed.42 Mild and efficient enantioselective nitroaldol reactions of nitromethane with various aldehydes have been catalysed by chiral copper Schiff-base complexes yielding the corresponding adducts with high yields and good enantiometric excess.43,44... [Pg.284]

An enantioselective aza-Henry reaction has been performed in the presence of zinc triflate and A-methylephedrine 47 This method features tolerance to imines that bear aryl groups of diverse electronic nature and substitution patterns. [Pg.284]

Henry D. Dakin London, UK 1st enantioselective synthesis, with oxynitrilase... [Pg.12]

Cyclohexanediamine-derived amine thiourea 70, which provided high enantio-selectivities for the Michael addition [77] and aza-Henry reactions [78], showed poor activity in the MBH reaction. This fact is not surprising when one considers that a chiral urea catalyst functions by fundamentally different stereoinduction mechanisms in the MBH reaction, and in the activation of related imine substrates in Mannich or Streclcer reactions [80]. In contrast, the binaph-thylamine thiourea 71 mediated the addition of dihydrocinnamaldehyde 74 to cyclohexenone 75 in high yield (83%) and enantioselectivity (71% ee) (Table 5.6, entry 2) [79]. The more bulky diethyl analogue 72 displayed similar enantioselectivity (73% ee) while affording a lower yield (56%, entry 3). Catalyst 73 showed only low catalytic activity in the MBH reaction (18%, entry 4). [Pg.167]

The use of bifunctional thiourea-substituted cinchona alkaloid derivatives has continued to gamer interest, with the Deng laboratory reporting the use of a 6 -thiourea-substituted cinchona derivative for both the Mannich reactions of malo-nates with imines [136] and the Friedel-Crafts reactions of imines with indoles [137]. In both reports, a catalyst loading of 10-20 mol% provided the desired products in almost uniformly high yields and high enantioselectivities. Thiourea-substituted cinchona derivatives have also been used for the enantioselective aza-Henry reactions of aldimines [138] and the enantioselective Henry reactions of nitromethane with aromatic aldehydes [139]. [Pg.250]

The enantioselective Henry reaction by using copper acetate-bis(oxazoline) catalyst is reported by Evans . ... [Pg.122]


See other pages where Henry enantioselective is mentioned: [Pg.19]    [Pg.318]    [Pg.318]    [Pg.320]    [Pg.367]    [Pg.147]    [Pg.181]    [Pg.265]    [Pg.304]    [Pg.305]    [Pg.310]    [Pg.324]    [Pg.434]    [Pg.161]    [Pg.358]    [Pg.131]    [Pg.335]    [Pg.1]    [Pg.220]    [Pg.221]    [Pg.249]    [Pg.77]    [Pg.72]    [Pg.298]   
See also in sourсe #XX -- [ Pg.849 ]




SEARCH



© 2024 chempedia.info