Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Henri-Michaelis-Menten function

Most commonly, the rate of formation of the inactivated enzyme, under steady-state conditions, can be described by the rectangular hyperbolic function often associated with the traditional Henri-Michaelis-Menten function (25,26) ... [Pg.519]

Thus, Kn, the Michaelis constant, is a dynamic or pseudo-equilibrium constant expressing the relationship between the actual steady-state concentrations, rather than the equilibrium.concentrations. If Aj, is very small compared to A-i, reduces to K. A steady-state treatment of the more realistic reaction sequence E+ S ES EP E + P yields the same final velocity equation although now Km is a more complex function, composed of the rate constants of all the steps. Thus, the physical significance of K cannot be stated with any certainty in the absence of other data concerning the relative magnitudes of the various rate constants. Nevertheless, represents a valuable constant that relates the velocity of an enzyme-catalyzed reaction to the substrate concentration. Inspection of the Henri-Michaelis-Menten equation shows that Km is equivalent to the substrate concentration that yields half-maximal velocity ... [Pg.218]

Analyses of enzyme reaction rates continued to support the formulations of Henri and Michaelis-Menten and the idea of an enzyme-substrate complex, although the kinetics would still be consistent with adsorption catalysis. Direct evidence for the participation of the enzyme in the catalyzed reaction came from a number of approaches. From the 1930s analysis of the mode of inhibition of thiol enzymes—especially glyceraldehyde-phosphate dehydrogenase—by iodoacetate and heavy metals established that cysteinyl groups within the enzyme were essential for its catalytic function. The mechanism by which the SH group participated in the reaction was finally shown when sufficient quantities of purified G-3-PDH became available (Chapter 4). [Pg.184]

Menten soon received international recognition for her study of enzymes. From 1912 to 1913, she worked at Leonor Michaelis lab at the University of Berlin. While conducting experiments on the breakdown of sucrose by the enzyme called invertase, Menten and Michaelis were able to refine the work of Victor Henri to explain how enzymes function. A few years earlier, Henri had proposed that enzymes bind directly to their substrates. Michaelis and Menten obtained the precise measurements that were needed to support Henri s hypothesis. Using the recently developed concept of pH, they were able to buffer their chemical reactions and thereby control the conditions of their experiments more... [Pg.308]


See also in sourсe #XX -- [ Pg.519 ]




SEARCH



MENTEN

Michaelis function

Michaelis-Menten

© 2024 chempedia.info