Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck reaction oxidative addition complex

On the other hand, even the recently prepared Herrmann-Beller catalystf still requires higher temperatures for efficient coupling rates of the Heck reaction. Interestingly, the complexation of chloroarenes with the Cr(CO)3 fragment activates the arene-chlorine bond considerably toward the oxidative addition. Thus, Cr(CO)3 complexed chloroarenes react about 15 times faster than iodoarenes in Pd-catalyzed cross-couphng reactions under mild conditions, in particular in Pd/Cu-catalyzed cross-couplings with terminal acetylenes in refluxing THF and/or tertiary amines (Scheme 36). ... [Pg.515]

Frequently, a considerable amount of side products, derived from facile aryl-aryl exchange in the oxidative addition complex, is formed in a Heck reaction executed in the presence of phosphine hgandsJ t This process is particularly significant at higher reaction temperatures and with electron-rich aryl halides. Thus, a reaction of 4-bromoanisole with butyl acrylate with Pd(OAc)2/PPh3 as the catalyst system and sodium acetate furnish butyl E-cinnamate in addition to the expected coupling product (Schente... [Pg.1138]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

The intramolecular Heck reaction presented in Scheme 8 is also interesting and worthy of comment. Rawal s potentially general strategy for the stereocontrolled synthesis of the Strychnos alkaloids is predicated on the palladium-mediated intramolecular Heck reaction. In a concise synthesis of ( )-dehydrotubifoline [( )-40],22 Rawal et al. accomplished the conversion of compound 36 to the natural product under the conditions of Jeffery.23 In this ring-forming reaction, the a-alkenylpalladium(n) complex formed in the initial oxidative addition step engages the proximate cyclohexene double bond in a Heck cyclization, affording enamine 39 after syn /2-hydride elimination. The latter substance is a participant in a tautomeric equilibrium with imine ( )-40, which happens to be shifted substantially in favor of ( )-40. [Pg.574]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

As mentioned in the discussion of the reaction mechanism for this transformation, the active species is a dicoordinate Pd(0) complex, and it is unclear whether an associative or a dissociative process is operative for oxidative addition. In this context, different NHC complexes containing only one carbene ligand have been tested in the Mizoroki-Heck reaction. The most successful are those prepared by Beller, which were able to perform the Mizoroki-Heck reaction of non-activated aryl chlorides with moderate to good yields in ionic liquids (Scheme 6.13). The same compounds have also been applied to the Mizoroki-Heck reaction of aryldiazonium... [Pg.165]

Recently, Larock and coworkers used a domino Heck/Suzuki process for the synthesis of a multitude of tamoxifen analogues [48] (Scheme 6/1.20). In their approach, these authors used a three-component coupling reaction of readily available aryl iodides, internal alkynes and aryl boronic acids to give the expected tetrasubsti-tuted olefins in good yields. As an example, treatment of a mixture of phenyliodide, the alkyne 6/1-78 and phenylboronic acid with catalytic amounts of PdCl2(PhCN)2 gave 6/1-79 in 90% yield. In this process, substituted aryl iodides and heteroaromatic boronic acids may also be employed. It can be assumed that, after Pd°-cata-lyzed oxidative addition of the aryl iodide, a ds-carbopalladation of the internal alkyne takes place to form a vinylic palladium intermediate. This then reacts with the ate complex of the aryl boronic acid in a transmetalation, followed by a reductive elimination. [Pg.372]

Presumably, the oxidative cyclization of 3 commences with direct palladation at the a position, forming o-arylpalladium(II) complex 5 in a fashion analogous to a typical electrophilic aromatic substitution (this statement will be useful in predicting the regiochemistry of oxidative additions). Subsequently, in a manner akin to an intramolecular Heck reaction, intermediate 5 undergoes an intramolecular insertion onto the other benzene ring, furnishing 6. (i-Hydride elimination of 6 then results in carbazole 4. [Pg.3]

The catalytic Pd complex and the aryl bromide together suggest the first step is oxidative addition of Pd(0) to the C5-Br bond. (The reduction of Pd(II) to Pd(0) can occur by coordination to the amine, p-hydride elimination to give a Pd(II)-H complex and an iminium ion, and deprotonation of Pd(IE)-H to give Pd(0).) The C10-C11 k bond can then insert into the C5-Pd bond to give the C5-C10 bond. P-Hydride elimination then gives the Cl 1-C12 n bond and a Pd(II)-H, which is deprotonated by the base to regenerate Pd(0). The overall reaction is a Heck reaction. [Pg.215]

The transformations of 136 proceed cleanly upon treatment with a catalytic amount of Pd(PPh3)4, in the presence of triethylamine and molecular sieve (MS) 4 A it apparently is initiated by oxidative addition of the N(sp )-0 bond of 136 to the Pd(0) complex, and this is succeeded by two or even three intramolecular carbopalladations followed by / -hydride elimination. This Heck-type reaction is not affected by the configuration of the oxime derivatives probably due to a facile enough if/Z-isomerization of the alkylideneaminopalladium intermediate. [Pg.327]

Another variant of the Heck reaction which is important in heterocyclic chemistry utilizes five membered heterocycles as olefin equivalent (2.2.)7 It is not clear whether the process, coined as heteroaryl Heck reaction follows the Heck mechanism (i. e. carbopalladation of the aromatic ring followed by //-elimination) or goes via a different route (e.g. electrophilic substitution by the palladium complex or oxidative addition into the C-H bond). Irrespective of these mechanistic uncertainties the reaction is of great synthetic value and is frequently used in the preparation of complex policyclic structures. [Pg.22]

The common feature of the first set of examples discussed is the coupling of an arylpalladium complex, formed in oxidative addition, with a five membered heterocyclic ring via the formal displacement of a hydrogen atom. This reaction, formally a Heck coupling, is often called the heteroaryl Heck reaction . [Pg.129]

Organopalladium(II) intermediates formed by oxidative addition of sp2 and sp3 organic halides and related compounds to Pd(0) species undergo a variety of synthetically useful reactions (e.g., Heck reaction) (191). For example, Pd complexes catalyze substitutive C—C bond formation between olefins and organic halides by the mechanism shown in Scheme 80 (192). The initially formed organo-Pd(II) intermediate adds across the C—C bond, and subsequent /3-elimination of Pd(II) hydride affords the final product. Other organic compounds that have electronegative... [Pg.104]

In an oxidative addition, Pd(0) complex 22 with BINAP as a ligand accepts alkenyl triflate It. The resulting Pd complex 23 is cationic, since the triflate anion is bound only loosely to the palladium and dissociates from the complex.1 Syn insertion of one of the two enantiotopic double bonds of the cyclopentadienc into the alkenyl-Pd bond of complex 23 leads firs to q -allyl-Pd complex 24. This is in rapid equilibrium with t 3-allyl-Pd complex 25. Neither 24 nor 25 contains a p-H atom in a yn relationship to palladium. Moreover, internal rotation is impossible in the con form a-tionaily fixed ring system. For this reason there is no possibility of a subsequent p-hydride elimination that would once again release the palladium catalyst. In a normal Heck reaction (see discussion) the catalytic cycle would be broken at this point. [Pg.47]

Extensive studies by Amatore, Jutand, and co-workers have shed light on the structure and oxidative addition chemistry of a number of synthetically important palladium complexes [42], In particular, these workers have shown that the major species in a solution of Pd(dba)2 and BINAP is Pd(dba)BINAP and that oxidative addition of Phi to this complex generates (Bl-NAP)Pd(Ph)I [42d,43], In addition, it has been demonstrated that palladium halide complexes such as (PhjP jaryljPdCl do not dissociate the halide ligand in DMF solution [44], whereas the corresponding triflate complex is completely dissociated [44,45], As noted earlier, the nature of the oxidative addition intermediates defines two mechanistic pathways for the Heck reaction the neutral pathway for unsaturated halide substrates and the cationic pathway for unsaturated triflate substrates [2c-g,3,7-9]. Further, it is possible for halide substrates to be diverted to the cationic pathway by addition of Ag(I) orTh(I) salts [3], and it is possible to divert some triflate substrates to the neutral pathway by addition of halide additives [38]. Individual steps of these two pathways have recently received some scrutiny. [Pg.692]

The first detailed study of the individual steps of the cationic pathway of the intramolecular Heck reaction was recently described by Brown (Scheme 8G.21) [46], Oxidative addition of aryl iodide 21.1 to [l,l -bis(diphenylphosphino)ferrocene](cyclooctatetraene)palladium generated 21,2. Complex 21.2 was stable at room temperature and was characterized by X-ray crystallography no interaction between the palladium center and the tethered alkene was observed in this intermediate. Treatment of 21.2 with AgOTf at -78°C removed iodide from the palladium coordination sphere, which facilitated a rapid alkene coordination and subsequent... [Pg.692]


See other pages where Heck reaction oxidative addition complex is mentioned: [Pg.303]    [Pg.257]    [Pg.170]    [Pg.139]    [Pg.240]    [Pg.90]    [Pg.5]    [Pg.100]    [Pg.127]    [Pg.567]    [Pg.576]    [Pg.147]    [Pg.124]    [Pg.161]    [Pg.716]    [Pg.732]    [Pg.210]    [Pg.175]    [Pg.130]    [Pg.44]    [Pg.163]    [Pg.356]    [Pg.436]    [Pg.351]    [Pg.31]    [Pg.9]    [Pg.25]    [Pg.55]    [Pg.281]   


SEARCH



Addition reactions complexes

Addition-oxidation reactions

Complexing additives

Heck oxidants

Heck reaction additives

Heck reaction complexes

Oxidation oxidative addition reaction

Oxidative Heck

Oxidative addition complexes

Oxidative addition reactions

© 2024 chempedia.info