Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck Pd

As mentioned earlier, both Dieck and Heck and Cassai developed this procedure as an extension into acetylenes of the Heck Pd-catalyzed arylation of alkenes. As it requires... [Pg.493]

R.F. Heck - Pd-Catalyzed Reactions of Organic Halides with Olefins,... [Pg.588]

Dimethyl iodo(4-pentenyl)malonate (926) undergoes a Pd-catalyzed intramolecular radical-type reaction to form the alkyl iodides 927 and 928. rather than a Heck-type reaction product(775]. The same products are also obtained by a radical reaction promoted by tin hydride(776]. Although yield was low, a similar cyclization of the n-chloro ester 929 to form the seven-membered ring 930 was ob,served(777(. [Pg.263]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Because Pd(II) salts, like Hgtll) salts, can effect electrophilic metallation of the indole ring at C3, it is also possible to carry out vinylation on indoles without 3-substituents. These reactions usually require the use of an equiv. of the Pd(ll) salt and also a Cu(If) or Ag(I) salt to effect reoxidation of the Pd. As in the standard Heck conditions, an EW substitution on the indole nitrogen is usually necessary. Entry 8 of Table 11.3 is an interesting example. The oxidative vinylation was achieved in 87% yield by using one equiv. of PdfOAcfj and one equiv. of chloranil as a co-oxidant. This example is also noteworthy in that the 4-broino substituent was unreactive under these conditions. Part B of Table 11.3 lists some other representative procedures. [Pg.111]

Standard Heck conditions were used to introduce the dchydroalanine side-chain with 4-bromo-3-iodo-l-(4-methylphenylsulfonyl)indole[12]. Using 4-fluoro-3-iodo-l-(4-methylphenylsulfonyl)indole as the reactant, Merlic and Semmelhack found that addition of 2 eq, of LiCl or KCl improved yields in reactions carried out with 10% Pd/C as the catalyst[13]. The addition of the dehyroalanine side chain can also be done by stoichiometric Pd-mediated vinylation (see Section 11.2). A series of C-subslituled dehydro tryptophans was prepared in 40-60% yield by this method[14]. [Pg.132]

Heck type vinylation of 4-bromo-l-(4-methylphenylsulfonyl)-indole proceeds in good yield with such alkenes as methyl acrylate, styrene and N-vinylphthalimide using Pd(OAc)2 (5 mol%) and tri-o-tolylphosphine as the... [Pg.141]

Pd-catalysts with heterocyclic ligands as catalysts for Heck reaction 98CSR427. [Pg.211]

Legros et al. (2001T2507) carried out the synthesis of acetylquinolines (e.g. 130) via Heck reaction of 3-bromoquinoline (70) and -butyl vinyl ether (Scheme 16) employing either Pd(dba)2 or Pd(OAc)a as the catalyst. In each case it was found that the Heck reaction for this synthesis gave better overall yields than using the Stille reaction (see Section IV.C). Another advantageous point in favor of the Heck is that it avoids the use of toxic stannane. [Pg.22]

This reaction is not a bona fide Heck reaction per se for two reasons (a) the starting material underwent a Hg Pd transmetallation first rather than the oxidative addition of an aryl halide or triflate to palladium(O) (b) instead of undergoing a elimination step to give an enone, transformation 134 136... [Pg.23]

In pyridinium chloride ionic liquids and in l,2-dimethyl-3-hexylimida2olium chloride ([HMMIMjCl), where the C(2) position is protected by a methyl group, only [PdClJ was observed, whereas in [HMIMjCl, the EXAFS showed the formation of a bis-carbene complex. In the presence of triphenylphosphine, Pd-P coordination was observed in all ionic liquids except where the carbene complex was formed. During the Heck reaction, the formation of palladium was found to be quicker than in the absence of reagents. Overall, the EXAFS showed the presence of small palladium clusters of approximately 1 nm diameter formed in solution. [Pg.145]

The first reaction pathway for the in situ formation of a metal-carbene complex in an imidazolium ionic liquid is based on the well loiown, relatively high acidity of the H atom in the 2-position of the imidazolium ion [29]. This can be removed (by basic ligands of the metal complex, for example) to form a metal-carbene complex (see Scheme 5.2-2, route a)). Xiao and co-workers demonstrated that a Pd imida-zolylidene complex was formed when Pd(OAc)2 was heated in the presence of [BMIMjBr [30]. The isolated Pd carbene complex was found to be active and stable in Heck coupling reactions (for more details see Section 5.2.4.4). Welton et al. were later able to characterize an isolated Pd-carbene complex obtained in this way by X-ray spectroscopy [31]. The reaction pathway to the complex is displayed in Scheme 5.2-3. [Pg.223]

The Heck reaction and other related transformations for selective C-C couplings are receiving a great deal of attention among synthetic chemists, due to their versatility for fine chemical synthesis. However, these reactions suffer in many cases from the instability of the Pd-catalysts used, resulting in high catalyst consumption and difficult processing. [Pg.241]

This work was followed up by other research groups, using different substrates and other Pd-precursor/ligand combinations in molten [NBu4]Br for Heck coupling. [Pg.241]

Scheme 5.2-16 Pd-calalyzed Heck reaction between butyl acrylate and bromobenzene,... Scheme 5.2-16 Pd-calalyzed Heck reaction between butyl acrylate and bromobenzene,...
The use of imidazolium-based ionic liquids in Pd-catalyzed Heck reactions always carries with it the possibility of in situ formation of Pd-carbene complexes (for more details see Section 5.2.2.3). The formation of these under the conditions of the Heck reaction was confirmed by investigations by Xiao et al. [30], who described a significantly enhanced reactivity of the Heck reaction in [BMIM]Br in relation to the same reaction in [BMIM][Bp4] and explained this difference by the fact that formation of Pd-carbene complexes was observed only in the bromide melt. [Pg.242]

Finally, some recently published Heck couplings of aryl iodides, including the use of Pd(0) nanoparticles formed in situ [92] and heterogeneous Pd on carbon [93] should be mentioned here. [Pg.242]

The ease of formation of the carbene depends on the nucleophilicity of the anion associated with the imidazolium. For example, when Pd(OAc)2 is heated in the presence of [BMIM][Br], the formation of a mixture of Pd imidazolylidene complexes occurs. Palladium complexes have been shown to be active and stable catalysts for Heck and other C-C coupling reactions [34]. The highest activity and stability of palladium is observed in the ionic liquid [BMIM][Brj. Carbene complexes can be formed not only by deprotonation of the imidazolium cation but also by direct oxidative addition to metal(O) (Scheme 5.3-3). These heterocyclic carbene ligands can be functionalized with polar groups in order to increase their affinity for ionic liquids. While their donor properties can be compared to those of donor phosphines, they have the advantage over phosphines of being stable toward oxidation. [Pg.269]

In an extension of this work, the Shibasaki group developed the novel transformation 48—>51 shown in Scheme 10.25c To rationalize this interesting structural change, it was proposed that oxidative addition of the vinyl triflate moiety in 48 to an asymmetric palladium ) catalyst generated under the indicated conditions affords the 16-electron Pd+ complex 49. Since the weakly bound triflate ligand can easily dissociate from the metal center, a silver salt is not needed. Insertion of the coordinated alkene into the vinyl C-Pd bond then affords a transitory 7t-allylpalladium complex 50 which is captured in a regio- and stereocontrolled fashion by acetate ion to give the optically active bicyclic diene 51 in 80% ee (89% yield). This catalytic asymmetric synthesis by a Heck cyclization/ anion capture process is the first of its kind. [Pg.576]

Pd/P(t-Bu)., in the presence of Cy2NMe, is an unusually mild and versatile catalyst for Heck reactions of aryl chlorides (Tables 1 and 2) (as well as for room-temperature reactions of aryl bromides).21 22 23 Example A, the coupling of chlorobenzene with butyl methacrylate, illustrates the application of this method to the stereoselective synthesis of a trisubstituted olefin a-methylcinnamic acid derivatives are an important family of compounds that possess biological activity (e.g., hypolipidemic24 and antibiotic25) and serve as intermediates in the synthesis of pharmaceuticals (e.g., Sulindac, a non-steroidal anti-inflammatory drug26). Example B, the coupling of 4-chlorobenzonitrile with styrene, demonstrates that Pd/P(t-Bu). can catalyze the Heck reaction of activated aryl chlorides at room temperature. [Pg.35]


See other pages where Heck Pd is mentioned: [Pg.274]    [Pg.277]    [Pg.15]    [Pg.581]    [Pg.34]    [Pg.274]    [Pg.11]    [Pg.274]    [Pg.277]    [Pg.15]    [Pg.581]    [Pg.34]    [Pg.274]    [Pg.11]    [Pg.44]    [Pg.45]    [Pg.127]    [Pg.239]    [Pg.524]    [Pg.559]    [Pg.143]    [Pg.23]    [Pg.25]    [Pg.26]    [Pg.136]    [Pg.111]    [Pg.242]    [Pg.567]    [Pg.568]    [Pg.569]    [Pg.569]    [Pg.571]    [Pg.572]    [Pg.576]    [Pg.251]   
See also in sourсe #XX -- [ Pg.2 , Pg.333 ]




SEARCH



Heck reactions, Pd-catalyzed

Ligand-free Heck Reactions using Low Pd-Loading

Pd catalyzing Heck reaction

© 2024 chempedia.info