Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat inserts

In the following, the measurement techniques and the fundamentals of the numerical modelling studies as well as their application on small scale domestic wood stoves will be described. Furthermore, relevant experimental results and information obtained by the numerical modelling studies as well as a detailed comparison of measured and computed data will be shown by means of an example for a commercially available tile stove heating insert. [Pg.658]

A tile stove heating insert, illustrated by Figure 5, with a thermal capacity of 10 kW, representing the state of the art of wood log combustion systems was selected as a test stove. The firing principle of the stove can be described as "backside downdraft". It consists of two spatially separated, well insulated reaction zones for gasification of the wood fuel and burnout of the combustible gases, respectively. [Pg.660]

Figures Investigated tile stove heating insert, lOkWi/,. Figures Investigated tile stove heating insert, lOkWi/,.
The present work showed the application of different measuring techniques and numerical simulation studies on a selected commercially available tile stove heating insert. For a basic understanding of the combustion process and therefore, for a further improvement of the emission behaviour, gas analysis by means of suction probes, temperature measurements by suction pyrometry as well as velocity measurements by Laser-Doppler Anemometry are carried out within the reaction zones of the stove. [Pg.669]

A variant is the tiled stove with a heating insert rtrade from cast iron or metal sheets. Cold room air enters the gap between the metal insert and cerarrric stove body and is heated before retrrming to the room. Unlike the high-mass ceramic stoves, such insert stoves store heat for relatively short periods, providing more flexibility for varying heat demand but less convenience. [Pg.206]

Heat and ultrasonic inserts. Fig. 15.4(c), can only be used in thermoplastics materials and are available in brass from M3 to M8. Heat inserts are used for low-volume production. The insert is placed on the end of a thermal insert tool and heated to the correct temperature, depending on the type of plastics component and pressed into a pre-drilled or pre-moulded hole. The plastic adjacent to the insert is softened and flows into the grooves to lock the insert in place. The thermal insert tool is removed and the plastic re-solidifies. [Pg.243]

Fig. 32). Using a fine pipette insert about i cm. length of the liquid into the bottom of the tube. Now place in the tube A a fine inverted melting-point tube B of about i mm. diameter, sealed at the upper end. Fasten the capillary tube to the ther- Fio. 32. mometer by means of a rubber band and place in a melting-point apparatus. Heat slowly until a stream of bubbles rises from the bottom... [Pg.60]

Sublimation. This is a most useful process for small-scale work as the losses are comparatively small. This can be performed (a) In a long narrow tube sealed at one end. The material is shaken to the closed end of the tube, which is then inserted horizontally in a metal-heating block (Fig. 50) (b) In the cold-finger device (Fig. 35, p. 62)-... [Pg.69]

The hydrolysis of as little as 0 5 ml. of the ester can be carried out in the combined reflux-distillation apparatus shown in Fig. 38 (p, 63). Pass a stream of cold water through the vertical condenser. Place in the 10 ml. pear-shaped flask 0 5 ml. of the ester, 5 ml. of 10% NaOH solution and one or two minute fragments of unglazed porcelain and heat the mixture gently for 15 minutes so that the vapours do not rise more than about half-way up the vertical water ondenser. Now run the water out of the ver ical condenser, insert a thermometer at the top, and pass water through the inclined condenser. Heat the flask sufficiently strongly to collect 1--2 ml. of distillate. This is dilute ethanol. [Pg.100]

In a 200 ml. distilling flask place 64 g. (50 ml.) of dry n-butyl bromide and 80 g. of dry silver nitrite (1). Insert a reflux condenser, carrying a cotton wool (or calcium chloride) guard tube, into the mouth of the flask and close the side arm with a small stopper. Allow the mixture to stand for 2 hours heat on a steam bath for 4 hours (some brown fumes are evolved), followed by 8 hours in an oil bath at 110°. Distil the mixture and collect the fraction of b.p. 149-151° as pure 1-nitro-n-butane (18 g.). A further small quantity may be obtained by distilling the fractions of low boihng point from a Widmer flask. [Pg.307]

Mix 50 ml. of formalin, containing about 37 per cent, of formaldehyde, with 40 ml. of concentrated ammonia solution (sp. gr. 0- 88) in a 200 ml. round-bottomed flask. Insert a two-holed cork or rubber stopper carrying a capillary tube drawn out at the lower end (as for vacuum distillation) and reaching almost to the bottom of the flask, and also a short outlet tube connected through a filter flask to a water pump. Evaporate the contents of the flask as far as possible on a water bath under reduced pressure. Add a further 40 ml. of concentrated ammonia solution and repeat the evaporation. Attach a reflux condenser to the flask, add sufficient absolute ethyl alcohol (about 100 ml.) in small portions to dissolve most of the residue, heat under reflux for a few minutes and filter the hot alcoholic extract, preferably through a hot water fuimel (all flames in the vicinity must be extinguished). When cold, filter the hexamine, wash it with a little absolute alcohol, and dry in the air. The yield is 10 g. Treat the filtrate with an equal volume of dry ether and cool in ice. A fiulher 2 g. of hexamine is obtained. [Pg.326]

C. Fumaric acid from furfural. Place in a 1-litre three-necked flask, fitted with a reflux condenser, a mechanical stirrer and a thermometer, 112 5 g. of sodium chlorate, 250 ml. of water and 0 -5 g. of vanadium pentoxide catalyst (1), Set the stirrer in motion, heat the flask on an asbestos-centred wire gauze to 70-75°, and add 4 ml. of 50 g. (43 ml.) of technical furfural. As soon as the vigorous reaction commences (2) bvi not before, add the remainder of the furfural through a dropping funnel, inserted into the top of the condenser by means of a grooved cork, at such a rate that the vigorous reaction is maintained (25-30 minutes). Then heat the reaction mixture at 70-75° for 5-6 hours (3) and allow to stand overnight at the laboratory temperature. Filter the crystalline fumaric acid with suction, and wash it with a little cold water (4). Recrystallise the crude fumaric acid from about 300 ml. of iif-hydrochloric acid, and dry the crystals (26 g.) at 100°. The m.p. in a sealed capillary tube is 282-284°. A further recrystaUisation raises the m.p. to 286-287°. [Pg.463]

Other halogen carriers may be used, e.g., 1-2 g. of iron filings, or 1 g. of aluminium amalgam. The bromine must then be added slowly from a dropping funnel to the benzene warmed on a water bath the apparatu.s shown in Fig. II, 13, 9 is suitable and a trap for the hydrogen bromide must, however, be inserted into the top of the condenser. After all the bromine has been introduced, the mixture is heated on a water bath until no red vapours are visible above the liquid. The Subsequent procedure is as above. [Pg.536]


See other pages where Heat inserts is mentioned: [Pg.11]    [Pg.660]    [Pg.366]    [Pg.785]    [Pg.9]    [Pg.75]    [Pg.257]    [Pg.304]    [Pg.162]    [Pg.164]    [Pg.102]    [Pg.237]    [Pg.11]    [Pg.660]    [Pg.366]    [Pg.785]    [Pg.9]    [Pg.75]    [Pg.257]    [Pg.304]    [Pg.162]    [Pg.164]    [Pg.102]    [Pg.237]    [Pg.222]    [Pg.1563]    [Pg.2]    [Pg.61]    [Pg.62]    [Pg.62]    [Pg.472]    [Pg.494]    [Pg.60]    [Pg.79]    [Pg.118]    [Pg.195]    [Pg.230]    [Pg.253]    [Pg.286]    [Pg.307]    [Pg.339]    [Pg.352]    [Pg.358]    [Pg.372]    [Pg.407]    [Pg.415]    [Pg.417]    [Pg.481]    [Pg.514]   


SEARCH



© 2024 chempedia.info