Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution, 13 heat capacity

Find an expression for (dV/dS)p for an ideal gas with constant heat capacity. Solution... [Pg.161]

This chapter presents quantitative methods for calculation of enthalpies of vapor-phase and liquid-phase mixtures. These methods rely primarily on pure-component data, in particular ideal-vapor heat capacities and vapor-pressure data, both as functions of temperature. Vapor-phase corrections for nonideality are usually relatively small. Liquid-phase excess enthalpies are also usually not important. As indicated in Chapter 4, for mixtures containing noncondensable components, we restrict attention to liquid solutions which are dilute with respect to all noncondensable components. [Pg.93]

That analyticity was the source of the problem should have been obvious from the work of Onsager (1944) [16] who obtained an exact solution for the two-dimensional Ising model in zero field and found that the heat capacity goes to infinity at the transition, a logarithmic singularity tiiat yields a = 0, but not the a = 0 of the analytic theory, which corresponds to a finite discontinuity. (Wliile diverging at the critical point, the heat capacity is synnnetrical without an actual discontinuity, so perhaps should be called third-order.)... [Pg.644]

Calorimetry is the basic experimental method employed in thennochemistry and thennal physics which enables the measurement of the difference in the energy U or enthalpy //of a system as a result of some process being done on the system. The instrument that is used to measure this energy or enthalpy difference (At/ or AH) is called a calorimeter. In the first section the relationships between the thennodynamic fiinctions and calorunetry are established. The second section gives a general classification of calorimeters in tenns of the principle of operation. The third section describes selected calorimeters used to measure thennodynamic properties such as heat capacity, enthalpies of phase change, reaction, solution and adsorption. [Pg.1899]

Solution calorimetry covers the measurement of the energy changes that occur when a compound or a mixture (solid, liquid or gas) is mixed, dissolved or adsorbed in a solvent or a solution. In addition it includes the measurement of the heat capacity of the resultant solution. Solution calorimeters are usually subdivided by the method in which the components are mixed, namely, batch, titration and flow. [Pg.1910]

Various flow calorimeters are available connnercially. Flow calorimeters have been used to measure heat capacities, enthalpies of mixing of liquids, enthalpy of solution of gases in liquids and reaction enthalpies. Detailed descriptions of a variety of flow calorimeters are given in Solution Calorimetry by Grolier [17], by Albert and Archer [18], by Ott and Womiald [H], by Simonson and Mesmer [24] and by Wadso [25]. [Pg.1914]

Grolier J-P E 1994 Heat capacity of organic liquids Solution Calorimetry, Experimental Thermodynamics vol IV, ed K N Marsh and PAG O Hare (Oxford Blackwell)... [Pg.1919]

Procedure. Calculate the heats of solution of the two species, KF and KF HOAc, at each of the four given molalities from a knowledge of the heat capacity. Calculate the enthalpy of solution per mole of solute at each concentration. Find... [Pg.74]

The tables in this section contain values of the enthalpy and Gibbs energy of formation, entropy, and heat capacity at 298.15 K (25°C). No values are given in these tables for metal alloys or other solid solutions, for fused salts, or for substances of undefined chemical composition. [Pg.532]

Fig. 12. Correlatioa of AT. The three lines represeat the best fit of a mathematical expressioa obtaiaed by multidimensional nonlinear regressioa techniques for 99, 95, and 90% recovery the poiats are for 99% recovery. = mean molar heat capacity of Hquid mixture, average over tower AY = VA2 slope of equiHbrium line for solute, to be taken at Hquid feed temperature mg = slope of equilibrium line for solvent. Fig. 12. Correlatioa of AT. The three lines represeat the best fit of a mathematical expressioa obtaiaed by multidimensional nonlinear regressioa techniques for 99, 95, and 90% recovery the poiats are for 99% recovery. = mean molar heat capacity of Hquid mixture, average over tower AY = VA2 slope of equiHbrium line for solute, to be taken at Hquid feed temperature mg = slope of equilibrium line for solvent.
SolubiHty parameters of 19.3, 16.2, and 16.2 (f /cm ) (7.9 (cal/cm ) ) have been determined for polyoxetane, po1y(3,3-dimethyl oxetane), and poly(3,3-diethyloxetane), respectively, by measuring solution viscosities (302). Heat capacities have been determined for POX and compared to those of other polyethers and polyethylene (303,304). The thermal decomposition behavior of poly[3,3-bis(ethoxymethyl)oxetane] has been examined (305). [Pg.368]

Solution Polymerization. In this process an inert solvent is added to the reaction mass. The solvent adds its heat capacity and reduces the viscosity, faciUtating convective heat transfer. The solvent can also be refluxed to remove heat. On the other hand, the solvent wastes reactor space and reduces both rate and molecular weight as compared to bulk polymerisation. Additional technology is needed to separate the polymer product and to recover and store the solvent. Both batch and continuous processes are used. [Pg.437]

Heat capacity data for metaborate solutions have been reported (87). The solubiUty of sodium metaborate tetrahydrate in methanol at 40°C is 26.4 wt % (61). [Pg.200]

Then, assuming the heat capacity of the solute is negligible,... [Pg.221]

The deviation of the heat capacity of a solid solution from the heat capacity calculated by the additivity hypothesis (Kopp-Neumann rule), a quantity of importance for the evaluation of the... [Pg.121]

On the experimental side, one may expect most progress from thermodynamic measurements designed to elucidate the non-configurational aspects of solution. The determination of the change in heat capacity and the change in thermal expansion coefficient, both as a function of temperature, will aid in the distinction between changes in the harmonic and the anharmonic characteristics of the vibrations. Measurement of the variation of heat capacity and of compressibility with pressure of both pure metals and their solutions should give some information on the... [Pg.143]

K. S. Pitzer and L. V. Coulter. "The Heat Capacities. Entropies and Heats of Solution of Anhydrous Sodium Sulfate and of Sodium Sulfate Decahydrate. The Application of the Third Law of Thermodynamics to Hydrated Crystals". J. Am. Chem. Soc.. 60. 1310-1313 (1938). [Pg.201]

Figure 5.1 is a graph of the specific heat capacity cp (heat capacity per gram) of aqueous sulfuric acid solutions at T — 298.15 K against A, the ratio of moles of water to moles of sulfuric acid. The values plotted were obtained from a very... [Pg.215]


See other pages where Solution, 13 heat capacity is mentioned: [Pg.1446]    [Pg.133]    [Pg.1269]    [Pg.1446]    [Pg.133]    [Pg.1269]    [Pg.1904]    [Pg.1916]    [Pg.73]    [Pg.14]    [Pg.533]    [Pg.105]    [Pg.30]    [Pg.34]    [Pg.342]    [Pg.470]    [Pg.534]    [Pg.199]    [Pg.294]    [Pg.341]    [Pg.1359]    [Pg.1466]    [Pg.284]    [Pg.64]    [Pg.1084]    [Pg.6]    [Pg.122]    [Pg.132]    [Pg.407]    [Pg.17]    [Pg.18]    [Pg.312]    [Pg.168]    [Pg.216]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Aqueous solutions heat capacity

Heat capacity aqueous salt solutions

Heat capacity ideal solutions

Heat capacity of solutes in water

Heat capacity of solutions

Heat capacity sodium chloride solution

Potassium carbonate solutions heat capacity

Potassium hydroxide solutions heat capacity

Sulfuric acid, solutions, heat capacity

© 2024 chempedia.info