Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree-Fock method equations

Nonempirical (ab initio) Methods. The Hartree-Fock Method equations ... [Pg.66]

While the equations of the Hartree-Fock approach can he rigorously derived, we present them post hoc and give a physical description of the approximations leading to them. The Hartree-Fock method introduces an effective one-electron Hamiltonian. as in equation (47) on page 194 ... [Pg.224]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

All the early work was concerned with atoms, with Sir William Hartree regarded as the father of the technique. His son, Douglas R. Hartree, published the definitive book, The Calculation of Atomic Structures, in 1957, and in this he derived the atomic HF equations and described numerical algorithms for their solution. Charlotte Froese Fischer was a research student working under the guidance of D. R. Hartree, and she published her own definitive book. The Hartree—Fock Method for Atoms A Numerical Approach in 1977. The Appendix lists a number of freely available atomie structure programs. Most of these can be obtained from the Computer Physics Communications Program Library. [Pg.113]

The first two kinds of terms are called derivative integrals, they are the derivatives of integrals that are well known in molecular structure theory, and they are easy to evaluate. Terms of the third kind pose a problem, and we have to solve a set of equations called the coupled Hartree-Fock equations in order to find them. The coupled Hartree-Fock method is far from new one of the earliest papers is that of Gerratt and Mills. [Pg.240]

The Hartree-Fock equations have to be solved by the coupled Hartree-Fock method. The following article affords a typical example. [Pg.300]

But alas most of what has been described so far concerning density theory applies in theory rather than in practice. The fact that the Thomas-Fermi method is capable of yielding a universal solution for all atoms in the periodic table is a potentially attractive feature but is generally not realized in practice. The attempts to implement the ideas originally due to Thomas and Fermi have not quite materialized. This has meant a return to the need to solve a number of equations separately for each individual atom as one does in the Hartree-Fock method and other ab initio methods using atomic orbitals. [Pg.104]

The Hartree-Fock orbitals are expanded in an infinite series of known basis functions. For instance, in diatomic molecules, certain two-center functions of elliptic coordinates are employed. In practice, a limited number of appropriate atomic orbitals (AO) is adopted as the basis. Such an approach has been developed by Roothaan 10>. In this case the Hartree-Fock differential equations are replaced by a set of nonlinear simultaneous equations in which the limited number of AO coefficients in the linear combinations are unknown variables. The orbital energies and the AO coefficients are obtained by solving the Fock-Roothaan secular equations by an iterative method. This is the procedure of the Roothaan LCAO (linear-combination-of-atomic-orbitals) SCF (self-consistent-field) method. [Pg.9]

In order to find a good approximate wave function, one uses the Hartree-Fock procedure. Indeed, the main reason the Schrodinger equation is not solvable analytically is the presence of interelectronic repulsion of the form e2/r. — r.. In the absence of this term, the equation for an atom with n electrons could be separated into n hydrogen-like equations. The Hartree-Fock method, also called the Self-Consistent-Field method, regards all electrons except one (called, for instance, electron 1), as forming a cloud of electric charge... [Pg.4]

In most work reported so far, the solute is treated by the Hartree-Fock method (i.e., Ho is expressed as a Fock operator), in which each electron moves in the self-consistent field (SCF) of the others. The term SCRF, which should refer to the treatment of the reaction field, is used by some workers to refer to a combination of the SCRF nonlinear Schrodinger equation (34) and SCF method to solve it, but in the future, as correlated treatments of the solute becomes more common, it will be necessary to more clearly distinguish the SCRF and SCF approximations. The SCRF method, with or without the additional SCF approximation, was first proposed by Rinaldi and Rivail [87, 88], Yomosa [89, 90], and Tapia and Goscinski [91], A highly recommended review of the foundations of the field was given by Tapia [71],... [Pg.11]

The Xa multiple scattering method generates approximate singledeterminant wavefunctions, in which the non-local exchange interaction of the Hartree-Fock method has been replaced by a local term, as in the Thomas-Fermi-Dirac model. The orbitals are solutions of the one-electron differential equation (in atomic units)... [Pg.60]

The description above may seem a little unhelpful since we know that in any interesting system the electrons interact with one another. The many different wave-function-based approaches to solving the Schrodinger equation differ in how these interactions are approximated. To understand the types of approximations that can be used, it is worth looking at the simplest approach, the Hartree-Fock method, in some detail. There are also many similarities between Hartree-Fock calculations and the DFT calculations we have described in the previous sections, so understanding this method is a useful way to view these ideas from a slightly different perspective. [Pg.21]

In most atomic programs (5) is actually solved self-consistently either in a local potential or by the relativistic Hartree-Fock method. There is, however, an important time-saving device that is often used in energy band calculations for actinides where the same radial Eq. (5) must be solved If (5.a) is substituted into (5.b) a single second order differential equation for the major component is obtained... [Pg.271]

We now consider the PPP, CNDO, INDO, and MINDO two-electron semiempirical methods. These are all SCF methods which iteratively solve the Hartree-Fock-Roothaan equations (1.296) and (1.298) until self-consistent MOs are obtained. However, instead of the true Hartree-Fock operator (1.291), they use a Hartree-Fock operator in which the sum in (1.291) goes over only the valence MOs. Thus, besides the terms in (1.292), f/corc(l) m these methods also includes the potential energy of interaction of valence electron 1 with the field of the inner-shell electrons rather than attempting a direct calculation of this interaction, the integrals of //corc(/) are given by various semiempirical schemes that make use of experimental data furthermore, many of the electron repulsion integrals are neglected, so as to simplify the calculation. [Pg.42]

In the Hartree-Fock method, the molecular (or atomic) electronic wave function is approximated by an antisymmetrized product (Slater determinant) of spin-orbitals each spin-orbital is the product of a spatial orbital and a spin function (a or ft). Solution of the Hartree-Fock equations (given below) yields the orbitals that minimize the variational integral. Thus the Hartree-Fock wave function is the best possible electronic wave function in which each electron is assigned to a spatial orbital. For a closed-subshell state of an -electron molecule, minimization... [Pg.286]

In this respect, the single-configurational Hartree-Fock method looks more promising and universal when combined with accounting for the relativistic effects in the framework of the Breit operator and for correlation effects by the superposition-of-configurations or by some other method (e.g. by solving the multi-configurational Hartree-Fock-Jucys equations (29.8), (29.9)). [Pg.257]

These (see Chapter 2) may be obtained utilizing the relativistic analogue of the Hartree-Fock method, normally called the Dirac-Hartree-Fock method [176-178], The relevant equations may be found in an analogous manner to the non-relativistic case, therefore here we shall present only final results (in a.u. let us recall that X = nlj, X = nl j) ... [Pg.338]

Open-shell Pseudohamiltonians.—The majority of atoms do not have valence structures which can be represented by the fully closed-shell wavefunction of equation (14), and consequently ab initio pseudopotentials cannot be derived directly from the theory outlined above. Acceptable wavefunctions for such atoms require either more than one determinant or the use of the symmetry-equivalenced or generalized Hartree-Fock method, and usually include partially filled shells. The total all-electron wavefunction may be symbolically expressed in terms of four subspaces,... [Pg.109]

Now, in the Hartree-Fock method (the Roothaan-Hall equations represent one implementation of the Hartree-Fock method) each electron moves in an average field due to all the other electrons (see the discussion in connection with Fig. 53, Section 5.23.2). As the c s are refined the MO wavefunctions improve and so this average field that each electron feels improves (since J and K, although not explicitly calculated (Section 5.2.3.63) improve with the i// s ). When the c s no longer change the field represented by this last set of c s is (practically) the same as that of the previous cycle, i.e. the two fields are consistent with one another, i.e. self-consistent . This Roothaan-Hall-Hartree-Fock iterative process (initial guess, first F, first-cycle c s, second F, second-cycle c s, third F, etc.) is therefore a self-consistent-field procedure or SCF procedure, like the Hartree-Fock procedure... [Pg.205]


See other pages where Hartree-Fock method equations is mentioned: [Pg.32]    [Pg.37]    [Pg.74]    [Pg.94]    [Pg.115]    [Pg.58]    [Pg.65]    [Pg.98]    [Pg.29]    [Pg.313]    [Pg.7]    [Pg.179]    [Pg.110]    [Pg.80]    [Pg.339]    [Pg.50]    [Pg.62]    [Pg.110]    [Pg.23]    [Pg.337]    [Pg.368]    [Pg.55]    [Pg.178]    [Pg.350]    [Pg.90]    [Pg.94]    [Pg.175]   
See also in sourсe #XX -- [ Pg.80 , Pg.83 ]




SEARCH



Fock equations

Hartree Fock equation

Hartree equation

Hartree-Fock method

© 2024 chempedia.info