Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamiltonians multireference coupled-clusters

L. Meissner and R. J. Bartlett, J. Chem. Phys., 94, 6670 (1991). Transformation of the Hamiltonian in Excitation Energy Calculations Comparison Between Fock-Space Multireference Coupled-Cluster and Equation-of-Motion Coupled-Cluster Methods. [Pg.128]

By adopting the no-pair approximation, a natural and straightforward extension of the nonrelativistic open-shell CC theory emerges. The multireference valence-universal Fock-space coupled-cluster approach is employed [25], which defines and calculates an effective Hamiltonian in a low-dimensional model (or P) space, with eigenvalues approximating some desirable eigenvalues of the physical Hamiltonian. The effective Hamiltonian has the form [26]... [Pg.164]

Recent developments include exact [12-14, 44, 90, 91] and approximate [14, 90, 92-94] iterative schemes to determine Hg, the intermediate Hamiltonian method [21, 24, 95], the use of incomplete model spaces [43, 44] and some multireference open-shell coupled-cluster (CC) formalisms [16-20, 96, 97]. Only some eigenvalues of the intermediate Hamiltonian H, are also eigenvalues of H. The corresponding model eigenvectors of H, are related to their true counterparts as in Bloch s theory. Provided effective operators a are restricted to act solely between these model eigenvectors, the possible a definitions from Bloch s formalism (see Section VI.A) can be used. [Pg.501]

Studies of rare earth or transition metal complexes often necessitate use of multireference wave functions. Among the Coupled Cluster type methods one can distinguish two main lines of approach to incorporate multireference character in the reference wave function. In the Hilbert space method one computes a single wave function for a particular state, while in the Fock space method one tries to obtain a manifold of states simultaneously. Since the latter method [40] has recently been implemented and applied in conjunction with the relativistic Hamiltonian [48-50] we will focus on this approach. [Pg.326]

The methods of choice must be adequate for manifolds of electronic states that are localized around a lanthanide ion in a solid host. The combination of a solid environment, a heavy element, and 4/, 5d, and other open-shells, demands the consideration of the effects of the solid host, the use of relativistic Hamiltonians up to spin-orbit coupling, the correct treatment of static and dynamic correlation, and handling large manifolds of quasi-degenerate excited states. We decided to use embedded-cluster wavefunction theory-based (EC-WFT) methods, with a two-component relativistic Hamiltonian to be used in two-steps, a multi-configurational variational treatment of static correlation, and a multireference second-order perturbation theory treatment of dynamic correlation. [Pg.220]


See other pages where Hamiltonians multireference coupled-clusters is mentioned: [Pg.346]    [Pg.54]    [Pg.466]    [Pg.471]    [Pg.242]    [Pg.615]    [Pg.339]    [Pg.344]    [Pg.158]    [Pg.169]    [Pg.435]    [Pg.217]    [Pg.613]    [Pg.26]    [Pg.162]    [Pg.4]    [Pg.107]    [Pg.90]    [Pg.93]   


SEARCH



Cluster coupled

Coupled-cluster Hamiltonian

Coupling Hamiltonians

Hamiltonian coupling

Multireference coupled cluster

© 2024 chempedia.info