Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamiltonian first order

In order to further understand the sptedfic features of dipole-dipole couplings, namely, the difference between homo- and heteronudear couplings, we need to make a short excursion into spin quantum mechanics. We start with the dipole-dipole Hamiltonian (first-order correction to the Zeeman Hamiltonian),... [Pg.189]

For qualitative insight based on perturbation theory, the two lowest order energy eorreetions and the first-order wavefunetion eorreetions are undoubtedly the most usetlil. The first-order energy eorresponds to averaging the eflfeets of the perturbation over the approximate wavefunetion Xq, and ean usually be evaluated without diflfieulty. The sum of aJ, Wd ds preeisely equal to tlie expeetation value of the Hamiltonian over... [Pg.50]

In all methods, the first-order interaetion energy is just the differenee between the expeetation value of the system Hamiltonian for the antisyimnetrized produet fiinetion and the zeroth-order energy... [Pg.196]

While all contributions to the spin Hamiltonian so far involve the electron spin and cause first-order energy shifts or splittings in the FPR spectmm, there are also tenns that involve only nuclear spms. Aside from their importance for the calculation of FNDOR spectra, these tenns may influence the FPR spectnim significantly in situations where the high-field approximation breaks down and second-order effects become important. The first of these interactions is the coupling of the nuclear spin to the external magnetic field, called the... [Pg.1556]

The total effective Hamiltonian H, in the presence of a vector potential for an A + B2 system is defined in Section II.B and the coupled first-order Hamilton equations of motion for all the coordinates are derived from the new effective Hamiltonian by the usual prescription [74], that is. [Pg.56]

If the states are degenerate rather than of different symmetry, the model Hamiltonian becomes the Jahn-Teller model Hamiltonian. For example, in many point groups D and so a doubly degenerate electronic state can interact with a doubly degenerate vibrational mode. In this, the x e Jahn-Teller effect the first-order Hamiltonian is then [65]... [Pg.286]

The first-order eorreetion ean be thought of as arising from the response of the wavefunetion (as eontained in its ECAO-MO and Cl amplitudes and basis funetions Xv) plus the response of the Hamiltonian to the external field. Beeause the MCSCF energy funetional has been made stationary with respeet to variations in the Cj and Ci a amplitudes, the seeond and third terms above vanish ... [Pg.509]

Equation (7) is a second-order differential equation. A more general formulation of Newton s equation of motion is given in terms of the system s Hamiltonian, FI [Eq. (1)]. Put in these terms, the classical equation of motion is written as a pair of coupled first-order differential equations ... [Pg.43]

Numerical solution of Eq. (51) was carried out for a nonlocal effective Hamiltonian as well as for the approximated local Hamiltonian obtained by applying a gradient expansion. It was demonstrated that the nonlocal effective Hamiltonian represents quite well the lateral variation of the film density distribution. The results obtained showed also that the film behavior on the inhomogeneous substrate depends crucially on the temperature regime. Note that the film exhibits different wetting temperatures on both parts of the surface. For chemical potential below the bulk coexistence value the film thickness on both parts of the surface tends to appropriate assymptotic values at x cx) and obeys the power law x. Such a behavior of the film thickness is a consequence of van der Waals tails. The above result is valid when both parts of the surface exhibit either continuous (critical) or first-order wetting. [Pg.282]

The spin Hamiltonian operates only on spin wavefunctions, and all details of the electronic wavefunction are absorbed into the coupling constant a. If we treat the Fermi contact term as a perturbation on the wavefunction theR use of standard perturbation theory gives a first-order energy... [Pg.308]

In the DC-biased structures considered here, the dynamics are dominated by electronic states in the conduction band [1]. A simplified version of the theory assumes that the excitation occurs only at zone center. This reduces the problem to an n-level system (where n is approximately equal to the number of wells in the structure), which can be solved using conventional first-order perturbation theory and wave-packet methods. A more advanced version of the theory includes all of the hole states and electron states subsumed by the bandwidth of the excitation laser, as well as the perpendicular k states. In this case, a density-matrix picture must be used, which requires a solution of the time-dependent Liouville equation. Substituting the Hamiltonian into the Liouville equation leads to a modified version of the optical Bloch equations [13,15]. These equations can be solved readily, if the k states are not coupled (i.e., in the absence of Coulomb interactions). [Pg.251]

The correction to the relaxing density matrix can be obtained without coupling it to the differential equations for the Hamiltonian equations, and therefore does not require solving coupled equations for slow and fast functions. This procedure has been successfully applied to several collisional phenomena involving both one and several active electrons, where a single TDHF state was suitable, and was observed to show excellent numerical behavior. A simple and yet useful procedure employs the first order correction F (f) = A (f) and an adaptive step size for the quadrature and propagation. The density matrix is then approximated in each interval by... [Pg.334]

It is also of interest to study the "inverse" problem. If something is known about the symmetry properties of the density or the (first order) density matrix, what can be said about the symmetry properties of the corresponding wave functions In a one electron problem the effective Hamiltonian is constructed either from the density [in density functional theories] or from the full first order density matrix [in Hartree-Fock type theories]. If the density or density matrix is invariant under all the operations of a space CToup, the effective one electron Hamiltonian commutes with all those elements. Consequently the eigenfunctions of the Hamiltonian transform under these operations according to the irreducible representations of the space group. We have a scheme which is selfconsistent with respect to symmetty. [Pg.134]

A nice derivation is given by Dr. Pascal Man, Directeur de recherche, CNRS, Universite Pierre et Marie Curie-Paris 6 at his web site http //www.pascal-man.coni/tensor-quadmpole-interaction/ V20-static.shtml. The Mathematica-5 script is also given and can be used for solving the first order Hamiltonian to explain quadmpole effects in high-field NMR spectra. [Pg.106]

The stream lines of a vector field v(x) are those trajectories where the vector v(x) is tangential to the path. In analogy to trajectories of atoms subject to the influence of a Hamiltonian, the stream lines obey an equation of motion of first order given by... [Pg.60]

As before, we make the fundamental assumption of TST that the reaction is determined by the dynamics in a small neighborhood of the saddle, and we accordingly expand the Hamiltonian around the saddle point to lowest order. For the system Hamiltonian, we obtain the second-order Hamiltonian of Eq. (2), which takes the form of Eq. (7) in the complexified normal-mode coordinates, Eq. (6). In the external Hamiltonian, we can disregard terms that are independent of p and q because they have no influence on the dynamics. The leading time-dependent terms will then be of the first order. Using complexified coordinates, we obtain the approximate Hamiltonian... [Pg.210]

Consider a first-order perturbation. The Hamiltonian for the perturbed system... [Pg.154]

The secular determinant as presented above involves the first-order perturbations of the Hamiltonian and the energy. More generally, it is formulated in terms of the Hamiltonian and the total energies of the perturbed system. From Eqs. (12) and (16),... [Pg.364]

Our analysis thus far has assumed that solution of the spin Hamiltonian to first order in perturbation theory will suffice. This is often adequate, especially for spectra of organic radicals, but when coupling constants are large (greater than about 20 gauss) or when line widths are small (so that line positions can be very accurately measured) second-order effects become important. As we see from... [Pg.39]

We now notice that we could write a Hamiltonian operator that would give the same matrix elements we have here, but as a first-order result. Including the electron Zeeman interaction term, we have the resulting spin Hamiltonian ... [Pg.125]


See other pages where Hamiltonian first order is mentioned: [Pg.195]    [Pg.135]    [Pg.226]    [Pg.558]    [Pg.404]    [Pg.101]    [Pg.279]    [Pg.296]    [Pg.27]    [Pg.254]    [Pg.463]    [Pg.641]    [Pg.740]    [Pg.26]    [Pg.27]    [Pg.43]    [Pg.69]    [Pg.332]    [Pg.72]    [Pg.290]    [Pg.351]    [Pg.186]    [Pg.36]    [Pg.104]    [Pg.224]    [Pg.163]    [Pg.152]    [Pg.100]    [Pg.505]    [Pg.57]   
See also in sourсe #XX -- [ Pg.67 , Pg.68 ]




SEARCH



Spin Hamiltonian first order

The First-Order Effective Hamiltonian

© 2024 chempedia.info