Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamiltonian Breit

In this section, the spin-orbit interaction is treated in the Breit-Pauli [13,24—26] approximation and incoi porated into the Hamiltonian using quasidegenerate perturbation theory [27]. This approach, which is described in [8], is commonly used in nuclear dynamics and is adequate for molecules containing only atoms with atomic numbers no larger than that of Kr. [Pg.464]

In Table I, 3D stands for three dimensional. The symbol symbol in connection with the bending potentials means that the bending potentials are considered in the lowest order approximation as already realized by Renner [7], the splitting of the adiabatic potentials has a p dependence at small distortions of linearity. With exact fomi of the spin-orbit part of the Hamiltonian we mean the microscopic (i.e., nonphenomenological) many-elecbon counterpart of, for example, The Breit-Pauli two-electron operator [22] (see also [23]). [Pg.489]

This potential is referred to in electromagnetism texts as the retarded potential. It gives a clue as to why a complete relativistic treatment of the many-body problem has never been given. A theory due to Darwin and Breit suggests that the Hamiltonian can indeed be written as a sum of nuclear-nuclear repulsions, electron-nuclear attractions and electron-electron repulsions. But these terms are only the leading terms in an infinite expansion. [Pg.307]

The second term on the right-hand side of the equation gives for point nuclei directly the one-electron spin-orhit operator (2) of the Breit-Pauli Hamiltonian and can he eliminated to give a spin-free equation that becomes equivalent to the Schrddinger equation in the non-relativistic limit. In a quaternion formulation of the Dirac equation the elimination becomes particularly simple. The algebra of the quaternion units is that of the Pauli spin matrices... [Pg.393]

The Dirac-Breit-Coulomb (DBC) Hamiltonian (Hdbc) is a good starting point for a discussion of many-fermion relativistic Hamiltonians, not only because of its historical importance and widespread use in molecular relativistic calculations (in spite of its known failures) but also as an excellent example of a disastrous... [Pg.439]

Table 8 Second-order many-body perturbation theory corrections to beryllium-like ions using non-relativistic (E ), Dirac-Coulomb (E ) and Dirac-Coulomb-Breit (E ) hamiltonians, obtained using the atomic precursor to BERTHA, known as SWIRLES. Basis sets are even-tempered S-spinors of dimension N= 17, with exponent sets, Xi generated by Xi = abi-i, with a = 0.413, and p = 1.376. Angular momenta in the range 0 < / < 6 have been included in the partial wave expansion of each second-order energy, and the total relativistic correction toE has been collected as Ef. All energies in hartree. Table 8 Second-order many-body perturbation theory corrections to beryllium-like ions using non-relativistic (E ), Dirac-Coulomb (E ) and Dirac-Coulomb-Breit (E ) hamiltonians, obtained using the atomic precursor to BERTHA, known as SWIRLES. Basis sets are even-tempered S-spinors of dimension N= 17, with exponent sets, Xi generated by Xi = abi-i, with a = 0.413, and p = 1.376. Angular momenta in the range 0 < / < 6 have been included in the partial wave expansion of each second-order energy, and the total relativistic correction toE has been collected as Ef. All energies in hartree.
The no-pair DCB Hamiltonian (6) is used as a starting point for variational or many-body relativistic calculations [9], The procedure is similar to the nonrelativistic case, with the Hartree-Fock orbitals replaced by the four-component Dirac-Fock-Breit (DFB) functions. The spherical symmetry of atoms leads to the separation of the one-electron equation into radial and spin-angular parts [10], The radial four-spinor has the so-called large component the upper two places and the small component Q, in the lower two. The quantum number k (with k =j+ 1/2) comes from the spin-angular equation, and n is the principal quantum number, which counts the solutions of the radial equation with the same k. Defining... [Pg.163]

The terms etc. represent the one-body mean-field potential, which approximates the two-electron interaction in the Hamiltonian, as is the practice in SCF schemes. In the DFB equations this interaction includes the Breit term (3) in addition to the electron... [Pg.163]

The Dirac-Coulomb-Breit Hamiltonian rewritten in second-quantized... [Pg.164]

Semi-relativistic Functionals from the Breit Hamiltonian... [Pg.201]

One of the purposes of this work is to make contact between relativistic corrections in quantum mechanics and the weakly relativistic limit of QED for this problem. In particular, we will check how performing plane-wave expectation values of the Breit hamiltonian in the Pauli approximation (only terms depending on c in atomic units) we obtain the proper semi-relativistic functional consistent in order ppl mc ), with the possibility of analyzing the separate contributions of terms with different physical meaning. Also the role of these terms compared to next order ones will be studied. [Pg.201]

Neglecting spin-orbit contributions (smaller than other relativistic corrections for the ground state of atoms, and zero for closed-shell ones), the Breit hamiltonian in the Pauli approximation [25] (weak relativistic systems) can be written for a many electron system as ... [Pg.201]

We have reproduced the c terms by means of the analysis of the different terms of the Breit hamiltonian with the exception of Darwin ones. These terms, denoted by Hp and given by Eq. (24) are not hermitian in general. The adjoint is given by... [Pg.202]

Energy levels of heavy and super-heavy (Z>100) elements are calculated by the relativistic coupled cluster method. The method starts from the four-component solutions of the Dirac-Fock or Dirac-Fock-Breit equations, and correlates them by the coupled-cluster approach. Simultaneous inclusion of relativistic terms in the Hamiltonian (to order o , where a is the fine-structure constant) and correlation effects (all products smd powers of single and double virtual excitations) is achieved. The Fock-space coupled-cluster method yields directly transition energies (ionization potentials, excitation energies, electron affinities). Results are in good agreement (usually better than 0.1 eV) with known experimental values. Properties of superheavy atoms which are not known experimentally can be predicted. Examples include the nature of the ground states of elements 104 md 111. Molecular applications are also presented. [Pg.313]


See other pages where Hamiltonian Breit is mentioned: [Pg.67]    [Pg.67]    [Pg.63]    [Pg.186]    [Pg.194]    [Pg.195]    [Pg.386]    [Pg.391]    [Pg.454]    [Pg.161]    [Pg.162]    [Pg.162]    [Pg.173]    [Pg.213]    [Pg.161]    [Pg.162]    [Pg.162]    [Pg.173]    [Pg.213]    [Pg.314]    [Pg.315]    [Pg.315]   
See also in sourсe #XX -- [ Pg.223 , Pg.225 ]




SEARCH



© 2024 chempedia.info