Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides aryl iodides

Formation of aryl Grignard reagents (Section 14 4) Aryl halides react with magnesium to form the corresponding arylmagnesium halide Aryl iodides are the most reac tive aryl fluorides the least A similar reaction occurs with lithium to give aryllithium reagents (Section 14 3)... [Pg.974]

Interestingly, this strategy was applied to the more reactive propargyl alkoxides allowing for the simultaneously introduction of the three partners at the start of the reaction. In fact, in this case, no side reactions occurred [95]. This process is remarkably versatile, giving good yields of stereodefined 3-arylidene (and alkenyli-dene) tetrahydrofurans 105 with a variety of propargyl alcohols (primary, secondary, and tertiary) and unsaturated halides (aryl iodides, vinyl bromides, and tri-flates) (Scheme 8.45). [Pg.249]

Sodium benzenetellurolate is arylated in liquid ammonia via photoinduced reactions with aryl halides Aryl iodides reacted with sodium benzenetellurolate in the presence of copper(I) iodide in hexamethylphosphoric triamide (but not in DMF or DMSO) to produce aryl phenyl tellurium compounds. However, lithium benzenetellurate reacted with 1,2-bromoiodobenzene and lithium methane tellurolate with 1,2-dibromobenzene in tetrahydrofuran at 20° to yield l,2-bis[organotelluro]benzenes . [Pg.176]

Tellurocyanate ion reacts with benzyl halides aryl iodides , arenediazonium tetraflu-oroborates, and with azulene" to form aryl tellurium cyanides. [Pg.236]

Among many substrates used for Pd(0)-catalyzed reactions, organic halides are most widely used. In Grignard reactions, Mg(0) metal reacts with organic halides of sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand, Pd(0) complexes react more easily with halides attached to sp carbons, namely aryl and alkenyl halides. In addition, several pseudohalides are used as well. They undergo facile oxidative addition to Pd(0) to form Pd complexes which have cr-Pd-carbon bonds. Scheme 3.1 summarizes the oxidative addition of phenyl halides and pseudohalides to form phenylpalladium halides. Aryl iodides and bromides have been used widely. [Pg.105]

A well-established method for the synthesis of internal alkynes 34 is the Pd/Cu-catalyzed coupling of vinyl halides, aryl iodides, bromides, or triflates with terminal acetylenes 33 (Scheme 12). Nevertheless, this method suffers not only from the need for large amounts of catalyst (1-5 mol % Pd and 1-10 mol % Cul) but also from the need of higher temperatures for the aryl bromides. [Pg.501]

Cyanation of aryl halides (aryl iodides and aryl bromides) was completed within 20 min using K [Fe(CN)g] as a cyanide source, water as the solvent and tetrabutylam-monium bromide (TBAB) in presence of palladium catalyst using microwave heating (Velmathi and Leadbeater, 2008). [Pg.75]

The alkenyloxirane 126 in excess reacts with aryl and alkenyl halides or triflates in the presence of sodium formate to afford the allylic alcohol 127[104], Similarly, the reaction of the alkenyloxetane 128 gives the homo-allylic alcohol 130[105]. These reactions can be explained by insertion of the double bond in the Ar—Pd bond, followed by ring opening (or /3-eliraination) to form the allylic or homoallylic alkoxypalladium 129, which is converted into the allylic 127 or homoallylic alcohol 130 by the reaction of formate. The 3-alkenamide 132 was obtained by the reaction of the 4-alkenyl-2-azetizinone 131 with aryl iodide and sodium formate [106]. [Pg.146]

The diazonium salts 145 are another source of arylpalladium com-plexes[114]. They are the most reactive source of arylpalladium species and the reaction can be carried out at room temperature. In addition, they can be used for alkene insertion in the absence of a phosphine ligand using Pd2(dba)3 as a catalyst. This reaction consists of the indirect substitution reaction of an aromatic nitro group with an alkene. The use of diazonium salts is more convenient and synthetically useful than the use of aryl halides, because many aryl halides are prepared from diazonium salts. Diazotization of the aniline derivative 146 in aqueous solution and subsequent insertion of acrylate catalyzed by Pd(OAc)2 by the addition of MeOH are carried out as a one-pot reaction, affording the cinnamate 147 in good yield[115]. The A-nitroso-jV-arylacetamide 148 is prepared from acetanilides and used as another precursor of arylpalladium intermediate. It is more reactive than aryl iodides and bromides and reacts with alkenes at 40 °C without addition of a phosphine ligandfl 16]. [Pg.148]

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

Organophosphorus compounds. Phosphorus-carbon bond fonnation takes place by the reaction of various phosphorus compounds containing a P—H bond with halides or tritlates. Alkylaryl- or alkenylalkylphosphinates are prepared from alkylphosphinate[638]. The optically active isopropyl alkenyl-methylphosphinate 778 is prepared from isopropyl methylphosphinate with retention[639]. The monoaryl and symmetrical and asymmetric diarylphosphi-nates 780, 781, and 782 are prepared by the reaction of the unstable methyl phosphinate 779 with different amounts of aryl iodides. Tnmethyl orthoformate is added to stabilize the methyl phosphinate[640]. [Pg.243]

Organolithium reagents (Section 14 3) Lithi um metal reacts with organic halides to pro duce organolithium compounds The organic halide may be alkyl alkenyl or aryl Iodides react most and fluorides least readily bro mides are used most often Suitable solvents include hexane diethyl ether and tetrahy drofuran... [Pg.615]

Aryl chlorides and bromides are prepared by reaction of an arenediazonium salt with the corresponding copper(I) halide, CuX, a process called the Sandmeyer reaction. Aryl iodides can be prepared by direct reaction with Nal without using a copper(T) salt. Yields generally fall between 60 and 80%. [Pg.942]

Early development of the homo-coupling reactions of aryl halides involves the use of stoichiometric amounts of air-sensitive Ni(0) complexes.54 The reaction could also be realized with a catalytic amount of Ni(0) complexes formed in situ when a stoichiometric amount of Zn was present. Besides aryl iodides, tosylates,... [Pg.486]

The palladium-catalyzed cross-coupling of alkenylsilanols has been extensively studied with respect to the structure of both the silicon component and the acceptor halide. The preferred catalyst for coupling of aryl iodides is Pd(dba)2 and for aryl bromides it is [allylPdCl]2. The most effective promoter is tetrabutylammonium fluoride used as a 1.0M solution in THF. In general the coupling reactions occur under mild conditions (room temperature, in 10 min to 12 hr) and some are even exothermic. [Pg.25]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

The hydrazone group is hydrolyzed (16-2) during the course of the reaction. Yields are high. Aryl iodides are converted to unsymmetrical diaryl ketones on treatment with aryImercury halides and nickel carbonyl ArH-Ar HgX-l-Ni(CO)4 ArCOAr... [Pg.870]


See other pages where Halides aryl iodides is mentioned: [Pg.981]    [Pg.1351]    [Pg.494]    [Pg.1112]    [Pg.305]    [Pg.494]    [Pg.1112]    [Pg.374]    [Pg.981]    [Pg.1351]    [Pg.494]    [Pg.1112]    [Pg.305]    [Pg.494]    [Pg.1112]    [Pg.374]    [Pg.36]    [Pg.130]    [Pg.147]    [Pg.200]    [Pg.210]    [Pg.228]    [Pg.238]    [Pg.242]    [Pg.701]    [Pg.714]    [Pg.170]    [Pg.538]    [Pg.540]    [Pg.563]    [Pg.805]    [Pg.863]    [Pg.866]    [Pg.868]    [Pg.869]    [Pg.871]   
See also in sourсe #XX -- [ Pg.32 , Pg.33 , Pg.34 , Pg.35 , Pg.36 , Pg.37 , Pg.38 , Pg.39 , Pg.40 , Pg.41 , Pg.42 , Pg.43 , Pg.44 , Pg.45 , Pg.46 , Pg.47 , Pg.48 , Pg.49 ]




SEARCH



Aryl halides Sonogashira reactions, copper® iodide

Aryl iodides

Aryl iodides arylation

Halides Iodides

Halides, aryl, also iodides

Iodide, potassium reaction with aryl halides

© 2024 chempedia.info