Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halides, aryl, also

The reaction is of the 8 2 type and works best with primary and secondary alkyl halides Elimination is the only reaction observed with tertiary alkyl halides Aryl and vinyl halides do not react Dimethyl sulfoxide is the preferred solvent for this reaction but alcohols and water-alcohol mixtures have also been used... [Pg.808]

Traditionally, the synthesis of symmetrical biaryls was routinely accomplished using the Ullmann reaction. Recently, palladium-catalyzed homocoupling of aryl halides has also been demonstrated to rival the utility of the Ullmann coupling. As illustrated in Scheme 21, using Pd(OAc)2 as the... [Pg.26]

Alkylation reactions are subject to the same constraints that affect all Sn2 reactions (Section 11.3). Thus, the leaving group X in the alkylating agent R—X can be chloride, bromide, iodide, or tosylate. The alkyl group R should be primary or methyl, and preferably should be allylic or benzylic. Secondary halides react poorly, and tertiary halides don t react at all because a competing E2 elimination of HX occurs instead. Vinylic and aryl halides are also unreactive because backside approach is sterically prevented. [Pg.855]

Such reactions appear to be rather general in scope, since an aryl example, the substitution for bromine in bromobenzene, and for halogen in a normal alkyl halide has also been observed (21). [Pg.189]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

Coupling of certain lithiated reagents with aryl and vinyl halides is also possible.82 These reactions probably proceeds by a fast halogen-lithium exchange, generating the alkyl halide, which then undergoes substitution. This reaction has been applied to P-lithiobenzamides.83... [Pg.636]

Procedures for the synthesis of ketones based on coupling of organostannanes with acyl halides have also been developed.211 The catalytic cycle is similar to that involved in coupling with aryl halides. The scope of compounds to which the reaction is applicable includes tetra-u-butylstannane. This example indicates that the reductive elimination step competes successfully with (3-elimination. [Pg.736]

Extension to carbocyclization of butadiene telomerization using nitromethane as a trapping reagent is reported (Eq. 5.48).72 Palladium-catalyzed carbo-annulation of 1,3-dienes by aryl halides is also reported (Eq. 5.49).73 The nitro group is removed by radical denitration (see Section 7.2), or the nitroalkyl group is transformed into the carbonyl group via the Nef reaction (see Section 6.1). [Pg.139]

The reduction of organic halides is of practical importance for the treatment of effluents containing toxic organic halides and also for valuable synthetic applications. Direct electroreduction of alkyl and aryl halides is a kinetically slow process that requires high overpotentials. Their electrochemical activation is best achieved by use of electrochemically generated low-valent transition metal catalysts. Electrocatalytic coupling reactions of organic halides were reviewed in 1997.202... [Pg.485]

Aryl halides can also be reduced by tin hydrides76,77, although these reactions always require initiators because the stronger C—X bonds in aryl halides are less reactive than the C—X bonds in alkyl halides. In fact, a series of meta- and para-substituted bromobenzenes, where X is either meta- or para-CH3O-, C=N, Cl, F, CF3, CH3, Bu-f or 2,6-dichloro, have been reduced by tributyltin deuteride (equation 60). It is worth noting that the more reactive bromide is reduced selectively in the presence of the less reactive chloride and fluoride groups (equation 61). [Pg.788]

The reactions represented by (191) are all nucleophilic substitutions occurring at a sulfonyl sulfur. Besides cpdisulfones substitutions of this kind are also of frequent occurrence in the chemistry of many other types of sulfonyl derivatives such as sulfonyl halides, aryl esters of sulfonic acids, etc., and many of the general aspects of their behaviour and mechanism have been examined in considerable detail. Most of the remainder of this section will be devoted to consideration of the results of such studies. [Pg.156]

This reaction involves the two reactants carbon monoxide and alcohol and produces esters, or lactones. The starting material, which will be considered here, is an alkene or an alkyne but it is also possible to start from activated halides (aryl- or allyl- iodides and bromides) to produce the same kind of organic products. [Pg.111]

To be really satisfactory, a Friedel-Crafts alkylation requires one relatively stable secondary or tertiary carbocation to be formed from the alkyl halide by interaction with the Lewis acid, i.e. cases where there is not going to be any chance of rearrangement. Note also that we are unable to generate carboca-tions from an aryl halide - aryl cations (also vinyl cations, see Section 8.1.3) are unfavourable - so that we cannot nse the Friedel-Crafts reaction to join aromatic gronps. There is also one further difficulty, as we shall see below. This is the fact that introduction of an alkyl substitnent on to an aromatic ring activates the ring towards fnrther electrophilic substitution. The result is that the initial product from Friedel-Crafts alkylations is more reactive than the... [Pg.308]

Phenyl o-radicals generated by reduction of aryl halides can also interact with an intramolecular alkene bond. Ihe method has been developed for the formation of dihydroindoles by reductive cyclization of N-allyl-2-chloroacetanilides. The results indicate the importance of a time interval between electron addition to give a radical-anion and the fragmentation of this species to give the active a-radical, The time interval allows the radical-anion to diffuse away from the electrode surface so that when the a-radical is foimed, it has time to cyclize before it can be reduced at the surface. [Pg.132]

In CHEC-II(1996) only one example of N-alkylation of a cinnolin-4(l//)-one is given <1996CHEC-II(6)1>. Nowadays, N-alkylation of pyridazinones is a quite general reaction. In most cases alkylations are achieved by a nucleophilic substitution reaction of the deprotonated azinone on alkyl halides and exceptionally also on aryl halides. Reagents other than halides are also used. [Pg.26]

As electrophiles for post-functionalization of awfi-carbomagnesiation, aryl and alkenyl halides can also be used when Pd catalyst is employed. By merging such Pd-catalyzed arylation, tamoxifen can be synthesized in a stereoselective manner (Scheme 36) . ... [Pg.648]

Instead of quenching with deuterium chloride, the intermediary organomonozinc compound can be used as a new nucleophile. Not only allylic halide but also alkenyl or aryl halide can be used as the first electrophile with bis(iodozincio)methane (3). In Scheme 23, examples for sequential coupling are summarized. In the case of coupling with bromoalkene, a nickel catalyst is more effective than a palladium catalyst. [Pg.661]

The Suzuki coupling of aryl halides was also extended to tosylates recently. Benzothiazole 5-tosylate reacted with m-xylene-2-boronic acid (6.13.) to give the coupled product in 94% yield using palladium acetate and a stericly congested biphenyl based phosphine ligand as catalyst.17 Another class of less commonly utilised cross-coupling partners are methyltio derivatives. In the presence of a copper salt, which activates the carbon-sulphur bond, 2-methyltio-benzotiazol coupled readily with a series of arylboronic acids.18... [Pg.102]

Under copper catalyzed conditions azoles (i.e. imidazoles) couple not only with aryl halides but also with arylboronic acids. The reaction, run in the presence of oxygen, follows a unique path (for details see Chapter 2.5.). From the synthetic point of view, the arylation of imidazole proceeds in good yield, although the regioselectivity in the arylation of 4-substituted imidazoles is only moderate (6.70.),102... [Pg.123]

The Heck reactions depicted so far all involve the coupling of halopyridines and other olefins. The alternate approach, coupling of a vinylpyridine with an aryl halide is also feasible, although less commonly employed. 4-Vinylpyridine was coupled successfully with diethyl 4-bromobenzylphosphonate (7.50.) in the presence of a highly active catalyst system consisting of palladium acetate and tn-o-tolylphosphine to give the desired product in 89% yield, which was used for grafting the pyridine moiety onto metal oxides.70... [Pg.158]

Acyl halides can be reduced to aldehydes1206 by treatment with lithium tri-f-butoxyaluminum hydride in diglyme at -78°C,1207 R may be alkyl or aryl and may contain many types of substituents, including N02, CN, and EtOOC groups. The reaction stops at the aldehyde stage because steric hindrance prevents further reduction under these conditions. Acyl halides can also be reduced to aldehydes by hydrogenolysis with palladium-on-barium sulfate... [Pg.446]

Aryl- and heteroaryl halides can undergo thermal or transition metal catalyzed substitution reactions with amines. These reactions proceed on insoluble supports under conditions similar to those used in solution. Not only halides, but also thiolates [76], nitro groups [76], sulfinates [77,78], and alcoholates [79] can serve as leaving groups for aromatic nucleophilic substitution. [Pg.269]

Notice that all the examples in Table 8.1 involve alkyl halides, that is, compounds in which the halogen is attached to an sp3-hybridized carbon. Alkenyl halides and aryl Alkenyl halides are also rehalides, compounds in which the halogen is attached to -hybridized carbons, are ferred to as vinylic halides. [Pg.334]

The oxidative addition is quite general with alkyl, allyl, benzyl, vinyl, and aryl halides as well as with acyl halides to afford the palladium (II) complex VII. The frans-bis( triphenylphosphine )alkylpalladium halides can also be carbonylated in an insertion reaction to give the corresponding acyl complexes, the stereochemistry of which (17, 18) proceeds with retention of configuration at the carbon bonded to palladium. The acyl complex also can be formed from the addition of the corresponding acid halide to tetrakis (triphenylphosphine) palladium (0). [Pg.108]


See other pages where Halides, aryl, also is mentioned: [Pg.213]    [Pg.240]    [Pg.246]    [Pg.532]    [Pg.535]    [Pg.537]    [Pg.712]    [Pg.798]    [Pg.863]    [Pg.315]    [Pg.389]    [Pg.136]    [Pg.388]    [Pg.66]    [Pg.855]    [Pg.68]    [Pg.784]    [Pg.394]    [Pg.240]    [Pg.246]    [Pg.450]    [Pg.614]    [Pg.656]    [Pg.240]    [Pg.246]   


SEARCH



Halides, aryl, also chlorides, bromides

Halides, aryl, also coupling

Halides, aryl, also iodides

Halides, aryl, also with alcohols

Organometallic compounds, also from aryl halides

© 2024 chempedia.info