Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uranium half-life

Isotopes are also used to determine properties of the environment. Just as carbon-14 is used to date organic materials, geologists can determine the age of very old substances such as rocks by measuring the abundance in rocks of radioisotopes with longer half-lives. Uranium-238 (t1/2 = 4.5 Ga, 1 Ga = 10y years) and potassium-40 (t,/2 = 1.26 Ga) are used to date very old rocks. For example, potassium-40 decays by electron capture to form argon-40. The rock is placed under vacuum and crushed, and a mass spectrometer is used to measure the amount of argon gas that escapes. This technique was used to determine the age of rocks collected on the surface of the Moon they were found to be 3.5-4.0 billion years old, about the same age as the Earth. [Pg.834]

There are three primary isotopes of uranium uranium-238, uranium-235, and uranium-234. These isotopes have incredibly long half-lives. Uranium-238 has the longest half-life—4.6 billion years. This means that the isotope is less radioactive because fewer of its nuclei disintegrate. Uranium-235 has a half-life of 700 million... [Pg.66]

Number of Half-Lives % Uranium % Lead Age of Rock... [Pg.250]

Gr. aktis, aktinos, beam or ray). Discovered by Andre Debierne in 1899 and independently by F. Giesel in 1902. Occurs naturally in association with uranium minerals. Actinium-227, a decay product of uranium-235, is a beta emitter with a 21.6-year half-life. Its principal decay products are thorium-227 (18.5-day half-life), radium-223 (11.4-day half-life), and a number of short-lived products including radon, bismuth, polonium, and lead isotopes. In equilibrium with its decay products, it is a powerful source of alpha rays. Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor at about 1100 to 1300-degrees G. The chemical behavior of actinium is similar to that of the rare earths, particularly lanthanum. Purified actinium comes into equilibrium with its decay products at the end of 185 days, and then decays according to its 21.6-year half-life. It is about 150 times as active as radium, making it of value in the production of neutrons. [Pg.157]

By far of greatest importance is the isotope Pu2sy with a half-life of 24,100 years, produced in extensive quantities in nuclear reactors from natural uranium 23su(n, gamma) —> 239U—(beta) —> 239Np—(beta) —> 239pu. Fifteen isotopes of plutonium are known. [Pg.204]

Each of the elements has a number of isotopes (2,4), all radioactive and some of which can be obtained in isotopicaHy pure form. More than 200 in number and mosdy synthetic in origin, they are produced by neutron or charged-particle induced transmutations (2,4). The known radioactive isotopes are distributed among the 15 elements approximately as follows actinium and thorium, 25 each protactinium, 20 uranium, neptunium, plutonium, americium, curium, californium, einsteinium, and fermium, 15 each herkelium, mendelevium, nobehum, and lawrencium, 10 each. There is frequently a need for values to be assigned for the atomic weights of the actinide elements. Any precise experimental work would require a value for the isotope or isotopic mixture being used, but where there is a purely formal demand for atomic weights, mass numbers that are chosen on the basis of half-life and availabiUty have customarily been used. A Hst of these is provided in Table 1. [Pg.212]

A few techniques exist that do not provide for direct dating but rather give information as to whether the object is of modem manufacture. One of these is dating (53). In the decay series of uranium, the first long-Hved member after Ra, with its 1622 yr half-life, is which has a 22 yr... [Pg.419]

Krypton and Xenon from Huclear Power Plants. Both xenon and krypton are products of the fission of uranium and plutonium. These gases are present in the spent fuel rods from nuclear power plants in the ratio 1 Kr 4 Xe. Recovered krypton contains ca 6% of the radioactive isotope Kr-85, with a 10.7 year half-life, but all radioactive xenon isotopes have short half-Hves. [Pg.11]

Uranium-239 [13982-01 -9] has a half-life of 23.5 min neptunium-239 [13968-59-7] has a half-life of 2.355 d. Recycling or reprocessing of spent fuel involves separation of plutonium from uranium and from bulk fission product isotopes (see Nuclearreactors, chemical reprocessing). [Pg.182]

The Natural Reactor. Some two biUion years ago, uranium had a much higher (ca 3%) fraction of U than that of modem times (0.7%). There is a difference in half-hves of the two principal uranium isotopes, U having a half-life of 7.08 x 10 yr and U 4.43 x 10 yr. A natural reactor existed, long before the dinosaurs were extinct and before humans appeared on the earth, in the African state of Gabon, near Oklo. Conditions were favorable for a neutron chain reaction involving only uranium and water. Evidence that this process continued intermittently over thousands of years is provided by concentration measurements of fission products and plutonium isotopes. Usehil information about retention or migration of radioactive wastes can be gleaned from studies of this natural reactor and its products (12). [Pg.222]

Radioactivity occurs naturally in earth minerals containing uranium and thorium. It also results from two principal processes arising from bombardment of atomic nuclei by particles such as neutrons, ie, activation and fission. Activation involves the absorption of a neutron by a stable nucleus to form an unstable nucleus. An example is the neutron reaction of a neutron and cobalt-59 to yield cobalt-60 [10198 0-0] Co, a 5.26-yr half-life gamma-ray emitter. Another is the absorption of a neutron by uranium-238 [24678-82-8] to produce plutonium-239 [15117 8-5], Pu, as occurs in the fuel of a nuclear... [Pg.228]

Most uranium ore has a low, ca 1 part in 500, uranium content. Milling involves physical and chemical processing of the ore to extract the uranium. The mill tailings, which release gaseous radon-222 [13967-62-9] Ra, half-life 3.82 d, are placed in large piles and covered to prevent a local health problem. [Pg.228]

The discovery of plutonium-238, an a-emitter having a half-life, 0, of 87.7 years, by G. T. Seaborg and co-workers (9,10) was achieved by bombardment of uranium using deuterons, (eqs. 1 and 2) ... [Pg.191]

The same chemical separation research was done on thorium ores, leading to the discovery of a completely different set of radioactivities. Although the chemists made fundamental distinctions among the radioactivities based on chemical properties, it was often simpler to distinguish the radiation by the rate at which the radioactivity decayed. For uranium and thorium the level of radioactivity was independent of time. For most of the radioactivities separated from these elements, however, the activity showed an observable decrease with time and it was found that the rate of decrease was characteristic of each radioactive species. Each species had a unique half-life, ie, the time during which the activity was reduced to half of its initial value. [Pg.443]

The final member of the group, actinium, was identified in uranium minerals by A. Debieme in 1899, the year after P. and M. Curie had discovered polonium and radium in the same minerals. However, the naturally occurring isotope, Ac, is a emitter with a half-life of 21.77 y and the intense y activity of its decay products makes it difficult to study. [Pg.944]

Apart from the unstable (half-life 2.623 y) of which traces occur in uranium ores, the lanthanides are actually not rare. Cerium (66 ppm in the earth s crust) is the twenty-sixth most abundant of all elements, being half as abundant as Cl and 5 times as abundant as Pb. Even Tm (0.5 ppm), the rarest after Pm, is rather more abundant in the earth s crust than is iodine. [Pg.1229]

Although the nucleus of the uranium atom is relatively stable, it is radioactive, and will remain that way for many years. The half-life of U-238 is over 4.5 billion years the half-life of U-235 is over 700 million years. (Half-life refers to the amount of time it takes for one half of the radioactive material to undergo radioactive decay, turning into a more stable atom.) Because of uranium radiation, and to a lesser extent other radioactive elements such as radium and radon, uranium mineral deposits emit a finite quantity of radiation that require precautions to protect workers at the mining site. Gamma radiation is the... [Pg.866]

Plutonium has a much shorter half-life than uranium (24.000 years for Pu-239 6,500 years for Pu-240). Plutonium is most toxic if it is inhaled. The radioactive decay that plutonium undergoes (alpha decay) is of little external consequence, since the alpha particles are blocked by human skin and travel only a few inches. If inhaled, however, the soft tissue of the lungs will suffer an internal dose of radiation. Particles may also enter the blood stream and irradiate other parts of the body. The safest way to handle plutonium is in its plutonium dioxide (PuOj) form because PuOj is virtually insoluble inside the human body, gi eatly reducing the risk of internal contamination. [Pg.870]

Half-lives can be interpreted in terms of the level of radiation of the corresponding isotopes. Uranium has a very long half-life (4.5 X 109 yr), so it gives off radiation very slowly. At the opposite extreme is fermium-258, which decays with a half-life of 3.8 X 10-4 s. You would expect the rate of decay to be quite high. Within a second virtually all the radiation from fermium-258 is gone. Species such as this produce very high radiation during their brief existence. [Pg.295]

Uranium in water decays to form Zn24 and Sm by fission. Uranium has a half-life of 7 X 10s years. The zinc ions complex with water and act as a weak acid according to the following equation ... [Pg.533]

Thus we have returned to an isotope of uranium, 231U, but one of half-life very much shorter than that of U. This isotope begins a succession of a-decays, each moving the product upward in... [Pg.443]

The constant half-life of a nuclide is used to determine the ages of archaeological artifacts. In isotopic dating, we measure the activity of the radioactive isotopes that they contain. Isotopes used for dating objects include uranium-238, potassium-40, and tritium. However, the most important example is radiocarbon dating, which uses the decay of carbon-14, for which the half-life is 5730 a. [Pg.832]

Uranium-238 decays through a series of ct and p emissions to lead-206, with an overall half-life for the entire process of 4.5 Ga. How old is a uranium-bearing ore that is found to have a 238U/2(,6Pb ratio of (a) 1.00 and (b) 1.25 ... [Pg.846]

Attree RW, Cabell MJ, Cushing RL, Pieroni JJ (1962) A calorimetric determination of the half-life of thorium-230 and a consequent revision to its neutron capture cross section. Can J Phys 40 194-201 Bateman H (1910) Solution of a system of differential equations occurring in the theory of radioactive transformations. Proc Cambridge Phil Soc 15 423-427 Beattie PD (1993) The generation of uranium series disequilibria by partial melting of spinel peridotite ... [Pg.19]


See other pages where Uranium half-life is mentioned: [Pg.966]    [Pg.340]    [Pg.413]    [Pg.106]    [Pg.154]    [Pg.201]    [Pg.203]    [Pg.207]    [Pg.227]    [Pg.16]    [Pg.221]    [Pg.313]    [Pg.34]    [Pg.13]    [Pg.1041]    [Pg.1042]    [Pg.1042]    [Pg.1097]    [Pg.698]    [Pg.443]    [Pg.398]    [Pg.37]    [Pg.51]    [Pg.60]    [Pg.126]    [Pg.233]    [Pg.379]    [Pg.389]    [Pg.410]    [Pg.425]    [Pg.461]   
See also in sourсe #XX -- [ Pg.132 , Pg.172 ]




SEARCH



Half-life of uranium

Half-life period uranium

Uranium biological half-life

© 2024 chempedia.info