Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Guanosine phosphorylation

The antiviral mechanism of action of acyclovir has been reviewed (72). Acyclovir is converted to the monophosphate in herpes vims-infected cells (but only to a limited extent in uninfected cells) by viral-induced thymidine kinase. It is then further phosphorylated by host cell guanosine monophosphate (GMP) kinase to acyclovir diphosphate [66341 -17-1], which in turn is phosphorylated to the triphosphate by unidentified cellular en2ymes. Acyclovir triphosphate [66341 -18-2] inhibits HSV-1 viral DNA polymerase but not cellular DNA polymerase. As a result, acyclovir is 300 to 3000 times more toxic to herpes vimses in an HSV-infected cell than to the cell itself. Studies have shown that a once-daily dose of acyclovir is effective in prevention of recurrent HSV-2 genital herpes (1). HCMV, on the other hand, is relatively uninhibited by acyclovir. [Pg.308]

All acyclic and carbocyclic guanosine analogues depicted in Fig. 1 follow the same modus operandi as exemplified for acyclovir (ACV) in Fig. 5, in that they need three phosphorylations to be converted to their active metabolite, the triphosphate form, which then interacts with the target enzyme, the viral DNA polymerase, as a chain terminator (De Clercq 2002). In its DNA chain-terminating... [Pg.67]

All NRTIs, as exemplified for AZT (Fig. 7), act in a similar fashion following their uptake by the cells, they are phosphorylated successively to their 5 -monophosphate, 5 -diphosphate, and 5 -triphosphate form (De Clercq 2002). Unlike the first phosphorylation step in the metabolic pathway of the acyclic guanosine analogues (see above), which is carried out by a virus-encoded enzyme (thymidine kinase), the first as well as the subsequent phosphorylations of the 2, 3 -dideoxynucleosides are carried out by cellular enzymes, that is, a 2 -deoxynucleoside (e.g., dThd) kinase, a 2 -deoxynucleotide (e.g., dTMP) kinase, and a (2 -deoxy)nucleoside 5 -diphosphate (NDP) kinase. [Pg.73]

A guanosine tetraphosphate with pyrophosphate groups in the 3 - and 5 -positions was synthesized by double phosphorylation of the corresponding guanosine 3, 5 -dipho-sphate.1501... [Pg.254]

The intron group I ribozymes feature common secondary structure and reaction pathways. Active sites capable of catalyzing consecutive phosphodi-ester reactions produce properly spliced and circular RNAs. Ribozymes fold into a globular conformation and have solvent-inaccessible cores as quantified by Fe(II)-EDTA-induced free-radical cleavage experiments. The Tetrahy-mem group I intron ribozyme catalyzes phosphoryl transfer between guanosine and a substrate RNA strand—the exon. This ribozyme also has been proposed to use metal ions to assist in proper folding, to activate the nucleophile, and to stabilize the transition state. ... [Pg.244]

In the preceding sections the conversion of purines and purine nucleosides to purine nucleoside monophosphates has been discussed. The monophosphates of adenosine and guanosine must be converted to their di- and triphosphates for polymerization to RNA, for reduction to 2 -deoxyribonucleoside diphosphates, and for the many other reactions in which they take part. Adenosine triphosphate is produced by oxidative phosphorylation and by transfer of phosphate from 1,3-diphosphoglycerate and phosphopyruvate to adenosine diphosphate. A series of transphosphorylations distributes phosphate from adenosine triphosphate to all of the other nucleotides. Two classes of enzymes, termed nucleoside mono-phosphokinases and nucleoside diphosphokinases, catalyse the formation of the nucleoside di- and triphosphates by the transfer of the terminal phosphoryl group from adenosine triphosphate. Muscle adenylate kinase (myokinase)... [Pg.80]

The product succinyl-CoA is able to participate in ATP synthesis as an example of substrate-level phosphorylation - we met some other examples in the glycolytic pathway. Essentially, hydrolysis of succinyl-CoA liberates snfficient energy that it can be coupled to the synthesis of ATP from ADP. However, guanosine triphosphate (GTP) is the... [Pg.588]

The subsequent cleavage of the thio-ester succinylCoA into succinate and coenzyme A by succinic acid-CoA ligase (succinyl CoA synthetase, succinic thiokinase) is strongly exergonic and is used to synthesize a phosphoric acid anhydride bond ( substrate level phosphorylation , see p. 124). However, it is not ATP that is produced here as is otherwise usually the case, but instead guanosine triphosphate (CTP). However, GTP can be converted into ATP by a nucleoside diphosphate kinase (not shown). [Pg.136]

The mechanism of the action of nitrates is not completely known, though it is reasonably likely that within smooth muscle cells, nitrates are transformed into nitrites, which then release NO. This, in turn, reacts with guanylatecyclase, causing increased synthesis of guanosine 3, 5 -monophosphate (cyclic GMP). As a result, a GMP-requiring protein kinase is activated, which results in less phosphorylation of muscle protein. Dephosphorylated muscle proteins are less able to contract, which ultimately results in a reduction of the heart s need for oxygen. [Pg.258]

Fig. 11. Modes of action of fluorine on osteoblastic cells, (a) Tyrosine phosphatase hypothesis in osteoblastic cells, fluoride ion directly inhibits tyrosine phosphatase. Inhibition of this enzyme enhances the tyrosine phosphorylation of signalling molecules induced by receptor tyrosine kinase, which leads to activation of the extracellular signal-regulated kinase (ERK) through the Ras pathway and enhanced cell proliferation, (b) G-protein hypothesis in osteoblast-like cells, fluoride ions form a complex with aluminum, probably fluoroaluminate, which interacts with guanosine 5 -diphosphate (GDP) to form guanosine 5 -triphosphate (GTP)-like molecule. Activation of the G, protein stimulates the tyrosine phosphorylation of signalling molecules by a yet unknown tyrosine kinase (Tyr Kin) and activation of the ERK kinase through the Ras pathway leads to enhanced cell proliferation. (Reproduced by permission of Elsevier from Ref. [175] ... Fig. 11. Modes of action of fluorine on osteoblastic cells, (a) Tyrosine phosphatase hypothesis in osteoblastic cells, fluoride ion directly inhibits tyrosine phosphatase. Inhibition of this enzyme enhances the tyrosine phosphorylation of signalling molecules induced by receptor tyrosine kinase, which leads to activation of the extracellular signal-regulated kinase (ERK) through the Ras pathway and enhanced cell proliferation, (b) G-protein hypothesis in osteoblast-like cells, fluoride ions form a complex with aluminum, probably fluoroaluminate, which interacts with guanosine 5 -diphosphate (GDP) to form guanosine 5 -triphosphate (GTP)-like molecule. Activation of the G, protein stimulates the tyrosine phosphorylation of signalling molecules by a yet unknown tyrosine kinase (Tyr Kin) and activation of the ERK kinase through the Ras pathway leads to enhanced cell proliferation. (Reproduced by permission of Elsevier from Ref. [175] ...
Famciclovir is the diacetyl ester prodrug of 6-deoxypencidovir, an acyclic guanosine analog (Figure 49-2). After oral administration, famciclovir is rapidly deacetylated and oxidized by first-pass metabolism to penciclovir. It is active in vitro against HSV-1, HSV-2, VZV, EBV, and HBV. As with acyclovir, activation by phosphorylation is catalyzed by the virus-specified thymidine kinase in infected cells, followed by competitive inhibition of the viral DNA polymerase to block DNA synthesis. Unlike acyclovir, however, penciclovir does not cause chain termination. Penciclovir triphosphate has lower affinity for the viral DNA polymerase than acyclovir triphosphate, but it achieves higher intracellular concentrations. The most commonly encountered clinical mutants of HSV are thymidine kinase-deficient these are cross-resistant to acyclovir and famciclovir. [Pg.1071]


See other pages where Guanosine phosphorylation is mentioned: [Pg.308]    [Pg.310]    [Pg.1157]    [Pg.36]    [Pg.68]    [Pg.79]    [Pg.19]    [Pg.136]    [Pg.180]    [Pg.239]    [Pg.298]    [Pg.300]    [Pg.308]    [Pg.105]    [Pg.191]    [Pg.58]    [Pg.238]    [Pg.254]    [Pg.153]    [Pg.39]    [Pg.82]    [Pg.80]    [Pg.96]    [Pg.97]    [Pg.588]    [Pg.120]    [Pg.420]    [Pg.307]    [Pg.233]    [Pg.239]    [Pg.337]    [Pg.338]    [Pg.237]    [Pg.172]    [Pg.419]    [Pg.1072]    [Pg.1085]    [Pg.1086]   
See also in sourсe #XX -- [ Pg.298 ]

See also in sourсe #XX -- [ Pg.341 ]

See also in sourсe #XX -- [ Pg.131 , Pg.133 ]




SEARCH



Guanosin

Guanosine

© 2024 chempedia.info