Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glyoxylates synthesis

Woodward s total synthesis of cephalosporin C begins with L-cysteine (48) which establishes the chiral center at C-7. The cis geometry at C-6,7 is achieved in intermediate (49) which is cyclized to (50) by treatment with triethylaluminum. The dihydrothiazine ring is constructed by Michael addition to the condensation product of trichloroethyl glyoxylate... [Pg.294]

Isothiazole-4,5-dicarboxylic acid, 3-phenyl-dimethyl ester synthesis, S, 150 Isothiazole-5-glyoxylic acid ethyl ester reduction, 6, 156 Isothiazole-4-mercurioacetate reactions, 6, 164 Isothiazole-5-mercurioacetate reactions, 6, 164 Isothiazoles, 6, I3I-I75 acidity, 6, 141 alkylation, 6, 148 aromaticity, S, 32 6, 144-145 basicity, 6, I4I biological activity, 6, 175 boiling points, 6, I43-I44, 144 bond fixation, 6, 145 bond orders, 6, I32-I34 calculated, 6, 133 bromination, S, 58 6, 147 charge densities, 6, 132-134 cycloaddition reactions, 6, 152 desulfurization, S, 75 6, 152 deuteration, S, 70... [Pg.683]

In a further synthesis, Gut ° used the cyclization of the thiosemi-carbazone of glyoxylic acid (56) the 2-thioxo-5-oxo-2,3,4,6-tetra-hydro-l,2,4-triazine (57) formed was converted to 6-azauracil by applying aqueous solution of chloroacetic acid. (This reaction will be discussed later, e.g.. Section II,B,4,b.) The same procedure was used... [Pg.208]

Woodward s strychnine synthesis commences with a Fischer indole synthesis using phenylhydrazine (24) and acetoveratrone (25) as starting materials (see Scheme 2). In the presence of polyphosphor-ic acid, intermediates 24 and 25 combine to afford 2-veratrylindole (23) through the reaction processes illustrated in Scheme 2. With its a position suitably masked, 2-veratrylindole (23) reacts smoothly at the ft position with the Schiff base derived from the action of dimethylamine on formaldehyde to give intermediate 22 in 92% yield. TV-Methylation of the dimethylamino substituent in 22 with methyl iodide, followed by exposure of the resultant quaternary ammonium iodide to sodium cyanide in DMF, provides nitrile 26 in an overall yield of 97%. Condensation of 2-veratryl-tryptamine (20), the product of a lithium aluminum hydride reduction of nitrile 26, with ethyl glyoxylate (21) furnishes Schiff base 19 in a yield of 92%. [Pg.27]

The use of chiral bis(oxazoline) copper catalysts has also been often reported as an efficient and economic way to perform asymmetric hetero-Diels-Alder reactions of carbonyl compounds and imines with conjugated dienes [81], with the main focus on the application of this methodology towards the preparation of biologically valuable synthons [82]. Only some representative examples are listed below. For example, the copper complex 54 (Scheme 26) has been successfully involved in the catalytic hetero Diels-Alder reaction of a substituted cyclohexadiene with ethyl glyoxylate [83], a key step in the total synthesis of (i )-dihydroactinidiolide (Scheme 30). [Pg.118]

Hanessian reported the synthesis of enantiomerically pure or highly enriched allylglycine and its chain-substituted analogs from the reaction of the sultam derivatives of O-benzyl glyoxylic acid oxime with ally he bromides in the presence of zinc powder in aqueous ammonium chloride (Eq. 11.41).72 Brown noticed the critical importance of water in the asymmetric allylboration of /V-trimethylsilyIbcnzaldimines with B-allyldiisopinocampheylborane.73 The reaction required one equivalent of water to proceed (Eq. 11.42). [Pg.355]

Acyclic dienes react with glyoxylic acid via an oxo-Diels-Alder reaction to give dihydropyran derivatives (Eq. 12.53). An excellent application of the oxo-Diels-Alder reaction is reported by Lubineau et al. in the synthesis of the sialic acids, 3-deoxy-Z)-manno-2-octulosonic acid (KDO) and 3-deoxy-D-glycero-D-galacto-2-nonulosonic acid (KDN).123... [Pg.404]

Cooke and coworkers reported on the synthesis of the amino acid N-benzyl-4-acetylproline (2-889) (Scheme 2.198) [453], as this might represent an interesting synthon for the preparation of bioactive compounds. These authors also used a domino iminium ion formation/aza-Cope/Mannich protocol. Thus, treatment of the secondary amine 2-885 with glyoxylic acid (2-888) primarily provided the corresponding iminium ion, which led to 2-889 in 64% yield as a mixture of diastereom-ers. [Pg.186]

Scheme 51 summarizes Mikami s synthesis of (R)-35, employing the car-bonyl-ene reaction of isoprene (A) with glyoxylate (B) to give C as catalyzed by a modified binaphthol-titanium complex [77]. [Pg.37]

Zamojski and coworkers have explored the use of the furan-carbonyl photocycloaddition in asymmetric synthesis, with somewhat limited success88. Irradiation of chiral glyoxylate derivative 196 [R = (R)(—)-menthyl and (R)(—)-8-phenylmenthyl] afforded... [Pg.304]

Fig. 4.15. Synthesis of KDO using ethyl diazoacetate as synthetic equivalent of the anion of glyoxylic acid ethyl ester [980]. Fig. 4.15. Synthesis of KDO using ethyl diazoacetate as synthetic equivalent of the anion of glyoxylic acid ethyl ester [980].
The diastereofacial selective imine-ene reactions with a-imino esters prepared from (—)-8-phenylmenthyl glyoxylate have provided an efficient entry to the asymmetric synthesis of a-amino acids, and a Lewis acid-mediated intramolecular imine-ene reaction has been used for the key spirocyclization step in a recent synthesis of (—)-perhydrohistrionicotoxin. Asymmetric azo-ene reactions have been effected using the chiral azo-enophile, di-(—)-(lR,2S)-2-phenyl-l-cyclohexyldiazenedicarboxylate. ... [Pg.543]


See other pages where Glyoxylates synthesis is mentioned: [Pg.432]    [Pg.396]    [Pg.254]    [Pg.257]    [Pg.258]    [Pg.669]    [Pg.670]    [Pg.738]    [Pg.743]    [Pg.168]    [Pg.183]    [Pg.17]    [Pg.238]    [Pg.42]    [Pg.246]    [Pg.329]    [Pg.351]    [Pg.139]    [Pg.138]    [Pg.110]    [Pg.117]    [Pg.10]    [Pg.99]    [Pg.355]    [Pg.224]    [Pg.301]    [Pg.93]    [Pg.181]    [Pg.201]    [Pg.120]    [Pg.119]    [Pg.75]   


SEARCH



Glyoxylate

© 2024 chempedia.info