Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glycoprotein thrombin

Figure 12.5 Proteolytic cleavage of prothrombin by factor Xa, yielding active thrombin. Although prothrombin is a single-chain glycoprotein, thrombin consists of two polypeptides linked by what was originally the prothrombin intrachain disulfide bond. The smaller thrombin polypeptide fragment consists of 49 amino acid residues, and the large polypeptide chain contains 259 amino acids. The N-terminal fragment released from prothrombin contains 274 amino acid residues. Activation of prothrombin by Xa does not occur in free solution, but at the site of vascular damage... Figure 12.5 Proteolytic cleavage of prothrombin by factor Xa, yielding active thrombin. Although prothrombin is a single-chain glycoprotein, thrombin consists of two polypeptides linked by what was originally the prothrombin intrachain disulfide bond. The smaller thrombin polypeptide fragment consists of 49 amino acid residues, and the large polypeptide chain contains 259 amino acids. The N-terminal fragment released from prothrombin contains 274 amino acid residues. Activation of prothrombin by Xa does not occur in free solution, but at the site of vascular damage...
Coagulation Factors II, III, VII, IX, X, XI, and Xlla fragments, thrombin, and plasmin are classified as serine proteases because each possesses a serine residue with neighboring histidine and asparagine residues at its enzymatically active site (Table 3). Factors II, VII, IX, and X, Protein C, Protein S, and Protein Z are dependent on the presence of vitamin K [84-80-0] for their formation as biologically functionally active procoagulant glycoproteins. [Pg.173]

Factor V. High in sialic acid content. Factor V is a large asymmetric single-chain glycoprotein that becomes an active participant in the coagulation cascade when it is converted to its active form by a-thrombin. Approximately 25% of human Factor V is found in the whole blood associated with platelets. Factor V is an essential cofactor along with Factor Xa plus phosphohpid plus Ca " in the conversion of prothrombin to thrombin. [Pg.174]

Fibrinolytic effecting protease enzyme from the poison secretion (venom) of Bothrops atrox with glycoprotein structure. It has thrombin similarly endopeptidase activity. [Pg.181]

Amino acid receptors Monoamine receptors Lipid receptors Purine receptors Neuropeptide receptors Peptide hormone receptors Chemokine receptors Glycoprotein receptors Protease receptors Metabotropic glutamate and GABAb receptors Adrenoceptors, dopamine and 5-HT receptors, muscarinic and histamine receptors Prostaglandin, thromboxane and PAF receptors Adenosine and ATP (P2Y) receptors Neuropeptide Y, opiate, cholecystokinin VIP, etc. Angiotensin, bradykinin, glucagon, calcitonin, parathyroid, etc. Interleukin-8 TSH, LH/FSH, chorionic gonadotropin, etc. Thrombin... [Pg.69]

Prothrombin (factor II) is a 582 amino acid, 72.5 kDa glycoprotein, which represents the circulating zymogen of thrombin (Ha). It contains up to six y-carboxyglutamate residues towards its N-terminal end, via which it binds several Ca2+ ions. Binding of Ca2+ facilitates prothrombin binding to factor Xa at the site of vascular injury. The factor Xa complex then proteolytically... [Pg.332]

Antithrombin, already mentioned in the context of heparin, is the most abundantly occurring natural inhibitor of coagulation. It is a single-chain 432 amino acid glycoprotein displaying four oligosaccharide side chains and an approximate molecular mass of 58 kDa. It is present in plasma at concentrations of 150 pig ml 1 and is a potent inhibitor of thrombin (factor Ha), as well as of factors IXa and Xa. It inhibits thrombin by binding directly to it in a 1 1 stoichiometric complex. [Pg.344]

Protein C. This vitamin K-dependent glycoprotein serine protease zymogen is produced in the liver. It is an anticoagulant with species specificity (19—21). Protein C is activated to Protein Ca by thrombomodulin, a protein that resides on the surface of endothelial cells, plus thrombin in the presence of calcium. In its active form, Protein Ca selectively inactivates, by proteolytic degradation, Factors V, Va, VIII, and Villa. In this reaction the efficiency of Protein Ca is enhanced by complex formation with free Protein S. In addition, Protein Ca activates tissue plasminogen activator, which promotes the conversion of plasminogen [9001-91-6] to plasmin [9001-90-5]. [Pg.175]

The most obvious effect of a deficiency in vitamin K in animals is delayed blood clotting, which has been traced to a decrease in the activity of prothrombin and of clotting factors VII, IX, and X (Chapter 12, Fig. 12-17). Prothrombin formed by the liver in the absence of vitamin K lacks the ability to chelate calcium ions essential for the binding of prothrombin to phospholipids and to its activation to thrombin. The structural differences between this abnormal protein and the normal prothrombin have been pinpointed at the N terminus of the 560 residue glycoprotein.e f Tryptic peptides from the N termini differed in electrophoretic mobility. As detailed in Chapter 12, ten residues within the first 33, which were identified as glutamate residues by the sequence analysis on normal prothrombin, are actually y-carboxyglutamate (Gla). The same amino acid is present near the N termini of clotting factors VII, IX, and X. [Pg.821]


See other pages where Glycoprotein thrombin is mentioned: [Pg.172]    [Pg.173]    [Pg.174]    [Pg.174]    [Pg.503]    [Pg.627]    [Pg.601]    [Pg.601]    [Pg.603]    [Pg.607]    [Pg.145]    [Pg.73]    [Pg.73]    [Pg.85]    [Pg.119]    [Pg.136]    [Pg.138]    [Pg.151]    [Pg.83]    [Pg.413]    [Pg.302]    [Pg.290]    [Pg.237]    [Pg.242]    [Pg.243]    [Pg.261]    [Pg.361]    [Pg.375]    [Pg.258]    [Pg.393]    [Pg.268]    [Pg.172]    [Pg.173]    [Pg.174]    [Pg.188]    [Pg.1154]    [Pg.1375]    [Pg.98]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Thrombin

© 2024 chempedia.info