Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gluconeogenesis sites

Pyruvate carboxylase is the most important of the anaplerotie reactions. It exists in the mitochondria of animal cells but not in plants, and it provides a direct link between glycolysis and the TCA cycle. The enzyme is tetrameric and contains covalently bound biotin and an Mg site on each subunit. (It is examined in greater detail in our discussion of gluconeogenesis in Chapter 23.) Pyruvate carboxylase has an absolute allosteric requirement for acetyl-CoA. Thus, when acetyl-CoA levels exceed the oxaloacetate supply, allosteric activation of pyruvate carboxylase by acetyl-CoA raises oxaloacetate levels, so that the excess acetyl-CoA can enter the TCA cycle. [Pg.663]

Step 1 of Figure 29.13 Carboxylation Gluconeogenesis begins with the carboxyl-afion of pyruvate to yield oxaloacetate. The reaction is catalyzed by pyruvate carboxylase and requires ATP, bicarbonate ion, and the coenzyme biotin, which acts as a carrier to transport CO2 to the enzyme active site. The mechanism is analogous to that of step 3 in fatty-acid biosynthesis (Figure 29.6), in which acetyl CoA is carboxylated to yield malonyl CoA. [Pg.1162]

Fructose-2,6-bisphosphatase, a regulatory enzyme of gluconeogenesis (Chapter 19), catalyzes the hydrolytic release of the phosphate on carbon 2 of fructose 2,6-bisphosphate. Figure 7-8 illustrates the roles of seven active site residues. Catalysis involves a catalytic triad of one Glu and two His residues and a covalent phos-phohistidyl intermediate. [Pg.54]

The synthesis of glucose from noncarbohydrate sources is referred to as the gluconeogenesis. It is feasible only in certain organism tissues. The major site for gluconeogenesis is the liver. To a lesser extent, the kidneys and intestinal mucosa are involved in this process. [Pg.186]

Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes a critical reaction in gluconeogenesis, which under many conditions is the rate-limiting step in the pathway. A cAlVfP response element (CRE) and a glucocorticoid response element (GRE) are each located upstream from the transcription start site. [Pg.74]

Answer C. Insulin increases glucose transport in only two tissues, adipose and muscle. The major site of glucose uptake is muscle, which decreases hyperglycemia. Glucose and ketone transport and metabolism are insulin independent in the brain (choice D). Insulin would slow gluconeogenesis (choice A) and fatty acid release from adipose (choice B). Insulin would inhibit glycogenolysis in the liver (choice E). [Pg.160]

The intermediates of the tricarboxylic acid cycle are present in the mitochondria only in very small quantities. After the oxidation of acetyl-CoA to CO2, they are constantly regenerated, and their concentrations therefore remain constant, averaged over time. Anabolic pathways, which remove intermediates of the cycle (e.g., gluconeogenesis) would quickly use up the small quantities present in the mitochondria if metabolites did not reenter the cycle at other sites to replace the compounds consumed. Processes that replenish the cycle in this way are called anaplerotic reactions. [Pg.138]

When fructose 2,6-bisphosphate binds to its allosteric site on PFK-1, it increases that enzyme s affinity for its substrate, fructose 6-phosphate, and reduces its affinity for the allosteric inhibitors ATP and citrate. At the physiological concentrations of its substrates ATP and fructose 6-phosphate and of its other positive and negative effectors (ATP, AMP, citrate), PFK-1 is virtually inactive in the absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate activates PFK-1 and stimulates glycolysis in liver and, at the same time, inhibits FBPase-1, thereby slowing gluconeogenesis. [Pg.581]

Hydrolysis of fructose 1,6-bisphosphate by fructose 1,6-bispho -phatase bypasses the irreversible phosphofructokinase-1 reaction, and provides an energetically favorable pathway for the formation of fructose 6-phosphate (Figure 10.4). This reaction is an important regulatory site of gluconeogenesis. [Pg.118]

Production Site Adrenal medulla and chromaffin cells in gut Metabolic effects increases oxygen consumption. temperature, basal metabolic rate, gluconeogenesis Pituitary effects stimulates production and release of ACTH and corticoids ... [Pg.787]

It is now generally recognized that an important site of regulation of both glycolysis and gluconeogenesis is at the level of fructose diphosphate formation and hydrolysis (10). In the direction of glycolysis, the activity of phosphofructokinase is inhibited by ATP and citrate, and this inhibition is reversed by AMP (11). The discovery that FDPase... [Pg.613]

The main site of gluconeogenesis is the liver, although it also occurs to a far lesser extent in the kidneys. Very little gluconeogenesis occurs in brain or muscle. Within liver cells, the first enzyme of gluconeogenesis, pyruvate carboxylase, is located in the mitochondrial matrix. The last enzyme, glucose 6-phosphatase is bound to the smooth endoplasmic reticulum. The other enzymes of the pathway are located in the cytosol. [Pg.290]

Early studies of the stimulatory effects of glucagon on hepatic gluconeogenesis using different gluconeogenic substrates and measuring the changes in the concentrations of intermediary metabolites identified the substrate cycles between pyruvate and P-enolpyruvate and between fructose-1,6-P2 and fructose-6-P as major sites of... [Pg.242]

The distribution of metabolic functions within acinar zones is determined principally by the microenvironment of the hepatocytes. Cells in zone 1 are the first to respond to changes in the portal blood, such as glucose and insulin levels, and therefore play important roles in glycolysis and gluconeogenesis. Protein synthesis, P-oxidation of fatty acids, cholesterol synthesis and bile acid secretion also predominate in zone 1. Ordinarily zone 3 hepatocytes are the principal site of cytochrome P450 oxidation/reduction activity as well as NADPH and NADH reductase metabolism, making this region more susceptible... [Pg.10]

The major site of gluconeogenesis is the liver, with a small amount also taking place in the kidney. Little gluconeogenesis takes place in the brain, skeletal muscle, or heart muscle. Rather, gluconeogenesis in the liver and kidney helps to maintain the glucose level in the blood so that brain and muscle can extract sufficient glucose from it to meet their metabolic demands. [Pg.675]

In eucaryotic cells, glycolysis, gluconeogenesis and fatty acid synthesis takes place in the cytosol, while the Krebs cycle is isolated within mitochondria glycogen is made in glycogen granules, lipid is synthesized in the endoplasmic reticulum and lysosomes carry on a variety of hydrolytic activities. As in procaryotic cells, ribosomes in the cytosol are the site of protein synthesis. [Pg.301]

Cytoplasm Cytoplasm is a jelly-like substance that is sometimes described as "the cell-matrix". It holds the organelles in place within the cell. Site for Glycolysis and most of gluconeogenesis Pentose Phosphate shunt Fatty acid biosynthesis. [Pg.14]


See other pages where Gluconeogenesis sites is mentioned: [Pg.743]    [Pg.745]    [Pg.750]    [Pg.750]    [Pg.140]    [Pg.229]    [Pg.285]    [Pg.169]    [Pg.84]    [Pg.213]    [Pg.544]    [Pg.918]    [Pg.524]    [Pg.787]    [Pg.267]    [Pg.271]    [Pg.277]    [Pg.295]    [Pg.132]    [Pg.586]    [Pg.117]    [Pg.709]    [Pg.83]    [Pg.12]    [Pg.42]    [Pg.164]    [Pg.22]    [Pg.1086]    [Pg.1260]    [Pg.1272]   
See also in sourсe #XX -- [ Pg.460 , Pg.767 , Pg.768 , Pg.769 ]




SEARCH



Gluconeogenesis

© 2024 chempedia.info