Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass transition temperatures systems

Elastomeric Modified Adhesives. The major characteristic of the resins discussed above is that after cure, or after polymerization, they are extremely brittie. Thus, the utility of unmodified common resins as stmctural adhesives would be very limited. Eor highly cross-linked resin systems to be usehil stmctural adhesives, they have to be modified to ensure fracture resistance. Modification can be effected by the addition of an elastomer which is soluble within the cross-linked resin. Modification of a cross-linked resin in this fashion generally decreases the glass-transition temperature but increases the resin dexibiUty, and thus increases the fracture resistance of the cured adhesive. Recendy, stmctural adhesives have been modified by elastomers which are soluble within the uncured stmctural adhesive, but then phase separate during the cure to form a two-phase system. The matrix properties are mosdy retained the glass-transition temperature is only moderately affected by the presence of the elastomer, yet the fracture resistance is substantially improved. [Pg.233]

Polymer systems have been classified according to glass-transition temperature (T), melting poiat (T ), and polymer molecular weight (12) as elastomers, plastics, and fibers. Fillers play an important role as reinforcement for elastomers. They are used extensively ia all subclasses of plastics, ie, geaeral-purpose, specialty, and engineering plastics (qv). Fillets are not, however, a significant factor ia fibers (qv). [Pg.368]

Since successful commercialization of Kapton by Du Pont Company in the 1960s (10), numerous compositions of polyimide and various new methods of syntheses have been described in the Hterature (1—5). A successful result for each method depends on the nature of the chemical components involved in the system, including monomers, intermediates, solvents, and the polyimide products, as well as on physical conditions during the synthesis. Properties such as monomer reactivity and solubiHty, and the glass-transition temperature,T, crystallinity, T, and melt viscosity of the polyimide products ultimately determine the effectiveness of each process. Accordingly, proper selection of synthetic method is often critical for preparation of polyimides of a given chemical composition. [Pg.396]

Relatively few processible polyimides, particularly at a reasonable cost and iu rehable supply, are available commercially. Users of polyimides may have to produce iutractable polyimides by themselves in situ according to methods discussed earlier, or synthesize polyimides of unique compositions iu order to meet property requirements such as thermal and thermoxidative stabilities, mechanical and electrical properties, physical properties such as glass-transition temperature, crystalline melting temperature, density, solubility, optical properties, etc. It is, therefore, essential to thoroughly understand the stmcture—property relationships of polyimide systems, and excellent review articles are available (1—5,92). [Pg.405]

Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ... Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ...
The dynamic mechanical properties of VDC—VC copolymers have been studied in detail. The incorporation of VC units in the polymer results in a drop in dynamic modulus because of the reduction in crystallinity. However, the glass-transition temperature is raised therefore, the softening effect observed at room temperature is accompanied by increased brittleness at lower temperatures. These copolymers are normally plasticized in order to avoid this. Small amounts of plasticizer (2—10 wt %) depress T significantly without loss of strength at room temperature. At higher levels of VC, the T of the copolymer is above room temperature and the modulus rises again. A minimum in modulus or maximum in softness is usually observed in copolymers in which T is above room temperature. A thermomechanical analysis of VDC—AN (acrylonitrile) and VDC—MMA (methyl methacrylate) copolymer systems shows a minimum in softening point at 79.4 and 68.1 mol % VDC, respectively (86). [Pg.434]

In cases where the copolymers have substantially lower glass-transition temperatures, the modulus decreases with increasing comonomer content. This results from a drop in crystallinity and in glass-transition temperature. The loss in modulus in these systems is therefore accompanied by an improvement in low temperature performance. However, at low acrylate levels (< 10 wt %), T increases with comonomer content. The brittle points in this range may therefore be higher than that of PVDC. [Pg.434]

Dichroma.te(VI) Glasses. Alkali dichromate(VI) glasses exist in systems such as Li2Cr20y—Na2Cr20y. The glass-transition temperatures of the dichromates are very low, about 0°C. The addition of chlorides or nitrates aids in glass formation. [Pg.331]

The highly polar nature of the TGMDA—DDS system results in high moisture absorption. The plasticization of epoxy matrices by absorbed water and its effect on composite properties have been well documented. As can be seen from Table 4, the TGMDA system can absorb as much as 6.5% (by weight) water (4). This absorbed water results in a dramatic drop in both the glass transition temperature and hot—wet flexural modulus (4—6). [Pg.21]

The use of elastomeric modifiers for toughening thermoset resias generally results ia lowering the glass transition temperature, modulus, and strength of the modified system. More recendy, ductile engineering thermoplastics and functional thermoplastic oligomers have been used as modifiers for epoxy matrix resias and other thermosets (12). [Pg.23]

Two resin systems based on this chemical concept are commercially available from Shell Chemical Company/Technochemie under the COMPIMIDE trademark COMPIMIDE 183 (34) [98723-11-2], for use in printed circuit boards, and COMPIMIDE 796 [106856-59-1], as a resin for low pressure autoclave mol ding (35). Typical properties of COMPIMIDE 183 glass fabric—PCB laminates are provided in Table 8. COMPIMIDE 183 offers a combination of advantageous properties, such as a high glass transition temperature, low expansion coefficient, and flame resistance without bromine compound additives. [Pg.26]

By a variation of chemistry and/or chain length the different time regimes can be shifted. From a simulation point of view we are again faced by the decision what kind of information we want to get out of the simulation. If one wants to look at very local properties, depending on the local chemistry of the individual monomers, there is no way around a simulation with all chemical details. However, one should keep in mind that by such a technique it is impossible to equilibrate the system near the glass transition temperature. [Pg.499]

Hamiltonian does not give rise to any crystalline order in the system. By employing models hke this, the quench-rate and chain-length dependence of the glass transition temperature, as well as time-temperature superposition, similar to experiments [23], were investigated in detail. [Pg.502]

Since quench rates in simulations typically are artificially high, this leads to a special problem for comparison with experiment as well as to the question whether there is a more general way to determine the glass transition temperature from the structure of the system. The experimental definition of viscosity is certainly not apphcable to simulations. [Pg.503]


See other pages where Glass transition temperatures systems is mentioned: [Pg.76]    [Pg.153]    [Pg.125]    [Pg.200]    [Pg.18]    [Pg.76]    [Pg.153]    [Pg.125]    [Pg.200]    [Pg.18]    [Pg.130]    [Pg.439]    [Pg.335]    [Pg.358]    [Pg.150]    [Pg.260]    [Pg.262]    [Pg.401]    [Pg.415]    [Pg.16]    [Pg.229]    [Pg.431]    [Pg.330]    [Pg.331]    [Pg.333]    [Pg.21]    [Pg.22]    [Pg.25]    [Pg.29]    [Pg.31]    [Pg.231]    [Pg.233]    [Pg.364]    [Pg.492]    [Pg.55]    [Pg.63]    [Pg.668]    [Pg.830]    [Pg.1156]    [Pg.499]    [Pg.503]    [Pg.286]   
See also in sourсe #XX -- [ Pg.6 , Pg.118 ]




SEARCH



Amorphous system glass-transition temperature

Glass temperature systems

Glass transition temperature blend systems

Glass transition temperatures different polymeric systems

Glass transition temperatures polymeric systems

Temperature systems

Transit system

© 2024 chempedia.info