Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gamma rays properties

Alpha Particles Beta Particles Gamma Rays Properties of Alpha, Beta, and Gamma Radiation... [Pg.268]

Figure 5.37 depicts the basic set up of a wireline logging operation. A sonde is lowered downhole after the drill string has been removed. The sonde is connected via an insulated and reinforced electrical cable to a winch unit at the surface. At a speed of about 600m per hour the cable Is spooled upward and the sonde continuously records formation properties like natural gamma ray radiation, formation resistivity or formation density. The measured data is sent through the cable and is recorded and processed in a sophisticated logging unita the surface. Offshore, this unit will be located in a cabin, while on land it is truck mounted. In either situation data can be transmitted in real time via satellite to company headquarters if required. [Pg.131]

Intentional hranching may improve the properties of the product polymer through grafting. A graft copolymer can he obtained by creating active sites on the polymer backbone. The addition of a different monomer then reacts at the active site and forms a branch. For example, polyethylene irradiated with gamma rays and then exposed to a reactive monomer, such as acrylonitrile, produces a polyethylene-polymer with acrylonitrile branches ... [Pg.303]

Gamma hexachlorocyclohexane, radiation resistance, 196 Gamma-rays, 188, 193, 194, 197, 202 Gamma-space, 320 Gas hydrates, 3, 20, 22, 25, 34 mechanism of formation, 4 thermodynamic properties, 15 x-ray work, 3... [Pg.406]

Findings with PDU. Work with the PDU largely paralleled the bench-scale reactor tests there was one important addition—extensive three-phase fluidization studies. As was mentioned, the PDU is equipped with a traversing gamma-ray density detector that is capable of measuring bed density to within dbO.Ol specific gravity units. Thus, we could measure and correlate fluidized bed expansion as a function of liquid and gas velocities and physical properties, and could also determine the... [Pg.165]

The nuclear reactor also must be shielded against the emission of radioactive material to the external environment. Suitable radiation controls include both thermal and biological shielding systems. Radiation from alpha particles (a rays) and beta particles ((3 rays) has little penetrating power, but gamma rays have deep penetration properties. Neutron radiation is, however, the primary area of risk. Typically, extremely thick concrete walls are used as a neutron absorber, but lead-lined concrete and special concretes are also used. [Pg.63]

The numerical combination of protons and neutrons in most nuclides is such that the nucleus is quantum mechanically stable and the atom is said to be stable, i.e., not radioactive however, if there are too few or too many neutrons, the nucleus is unstable and the atom is said to be radioactive. Unstable nuclides undergo radioactive transformation, a process in which a neutron or proton converts into the other and a beta particle is emitted, or else an alpha particle is emitted. Each type of decay is typically accompanied by the emission of gamma rays. These unstable atoms are called radionuclides their emissions are called ionizing radiation and the whole property is called radioactivity. Transformation or decay results in the formation of new nuclides some of which may themselves be radionuclides, while others are stable nuclides. This series of transformations is called the decay chain of the radionuclide. The first radionuclide in the chain is called the parent the subsequent products of the transformation are called progeny, daughters, or decay products. [Pg.301]

Interrogating the light from stars and the absorption features of atoms and molecules in-between requires some fairly complicated optics in the form of a telescope. However, the telescopes are not restricted to the parts of the electromagnetic spectrum that you can see but use radiation from microwaves to gamma rays to observe the Universe. There is too much to learn about the optics or even adaptive optics of telescopes to be discussed here but there are some properties of telescopes that we must know because they are important for the identification of atoms and molecules. We shall discuss three telescope considerations the atmosphere, the spatial resolution and the spectral resolution. [Pg.52]

At present, most PET scanners can acquire in both a two-dimensional as well as a three-dimensional mode, whereas SPECT cameras measure in a three-dimensional mode. The physical property of the dual-positron gamma-rays emission lends itself to mathematical reconstruction algorithms to produce three-dimensional images in which the calculations are much closer to exact theoretical ones than those of SPECT. This is, in part, due to the two-photon as opposed to single-photon approach. PET can now achieve resolutions, for example in animal-dedicated scanners, in the order of 1 or 2 mm. The resolution is inherently limited theoretically only by the mean free path or distance in which the positron travels before it annihilates with an electron, e.g. those in biological water 2-8 mm. SPECT, although achieving millimeter resolution with the appropriate instrumentation, cannot quite achieve these levels. [Pg.953]

A color superconducting phase is a reasonable candidate for the state of strongly interacting matter for very large quark chemical potential [16-20], Many properties of such a state have been investigated for two and three flavor QCD. In some cases these results rely heavily on perturbation theory, which is applicable for very large chemical potentials. Some initial applications to supemovae explosions and gamma ray bursts can be found in [21] and [22] respectively, see also [27], The interested reader can find a discussion of the effects of color superconductivity on the mass-radius relationship of compact stars in [45]... [Pg.149]

Mossbauer spectroscopy involves the measurement of minute frequency shifts in the resonant gamma-ray absorption cross-section of a target nucleus (most commonly Fe occasionally Sn, Au, and a few others) embedded in a solid material. Because Mossbauer spectroscopy directly probes the chemical properties of the target nucleus, it is ideally suited to studies of complex materials and Fe-poor solid solutions. Mossbauer studies are commonly used to infer properties like oxidation states and coordination number at the site occupied by the target atom (Flawthome 1988). Mossbauer-based fractionation models are based on an extension of Equations (4) and (5) (Bigeleisen and Mayer 1947), which relate a to either sums of squares of vibrational frequencies or a sum of force constants. In the Polyakov (1997)... [Pg.90]

It is interesting to compare the properties of positive electrons, positrons, with the properties of electrons in nonpolar liquids. Values of the mobility of positrons, )x +, are now available for a few liquids. Early measurements for in -hexane ranged from 8.5 to 100 cm /Vs [181,182]. In a recent study, the Doppler shift in energy of the 511-keV annihilation gamma ray in an electric field was utilized to measure the drift velocity. This method led to fi+ = 53 cm /Vs in -hexane and 69 cm /Vs in 2,2,4-trimethylpentane [183]. Interestingly, these values are comparable to the mobilities of quasi-free electrons in nonpolar liquids. [Pg.200]

Figure 28 Schematic presentation of the relative situation of the different types of radiations used in therapy. Two criteria are considered the physical selectivity and the LET (or radiobiological properties). For the low-LET radiations, the physical selectivity was improved from the historical 200-kV x-rays to cobalt-60 gamma rays and the modern linacs. Even with the linacs today, significant improvement is continuously achieved (IMRT, etc.). Among the low-LET radiation, the proton beams have the best physical characteristics, but one of the issues is the proportion of patients who will benefit from proton irradiation. A similar scale can be drawn for high-LET radiation the heavy-ion beams have a physical selectivity similar to protons. Selection between low- and high-LET radiation is a biological/medical problem it depends on the tumor characteristics, and reliable criteria still need to be established (see text). (From Ref 54.)... Figure 28 Schematic presentation of the relative situation of the different types of radiations used in therapy. Two criteria are considered the physical selectivity and the LET (or radiobiological properties). For the low-LET radiations, the physical selectivity was improved from the historical 200-kV x-rays to cobalt-60 gamma rays and the modern linacs. Even with the linacs today, significant improvement is continuously achieved (IMRT, etc.). Among the low-LET radiation, the proton beams have the best physical characteristics, but one of the issues is the proportion of patients who will benefit from proton irradiation. A similar scale can be drawn for high-LET radiation the heavy-ion beams have a physical selectivity similar to protons. Selection between low- and high-LET radiation is a biological/medical problem it depends on the tumor characteristics, and reliable criteria still need to be established (see text). (From Ref 54.)...
For the last 50 years, radiation processing by gamma rays, electron beams (E-beams) or X-rays has been an effective technique for improving the end-use properties of various kinds of polymers. The main applications for modification of... [Pg.255]

Conventional tin and glass containers can be satisfactorily treated by steam or hot air. Paper, cardboard, and heat-sensitive plastics require subtler techniques. Experiments with Co60 gamma rays indicate that 200,000 r. are sufficient to inactivate vegetative contaminants, while the customary 2 X 10 r. are required for spore formers. These doses are considerably below those that would be expected to have any effect on the physical properties of these materials (Sec. IIIC5). [Pg.414]


See other pages where Gamma rays properties is mentioned: [Pg.225]    [Pg.154]    [Pg.237]    [Pg.1028]    [Pg.494]    [Pg.203]    [Pg.356]    [Pg.6]    [Pg.66]    [Pg.4]    [Pg.56]    [Pg.28]    [Pg.134]    [Pg.46]    [Pg.104]    [Pg.463]    [Pg.277]    [Pg.886]    [Pg.516]    [Pg.518]    [Pg.573]    [Pg.1755]    [Pg.108]    [Pg.279]    [Pg.34]    [Pg.161]    [Pg.317]    [Pg.79]    [Pg.438]    [Pg.201]    [Pg.254]    [Pg.1801]    [Pg.212]    [Pg.18]   
See also in sourсe #XX -- [ Pg.77 , Pg.110 ]

See also in sourсe #XX -- [ Pg.110 , Pg.110 , Pg.111 ]




SEARCH



Gamma ray

© 2024 chempedia.info