Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gamma radiation, half-lives

Although the nucleus of the uranium atom is relatively stable, it is radioactive, and will remain that way for many years. The half-life of U-238 is over 4.5 billion years the half-life of U-235 is over 700 million years. (Half-life refers to the amount of time it takes for one half of the radioactive material to undergo radioactive decay, turning into a more stable atom.) Because of uranium radiation, and to a lesser extent other radioactive elements such as radium and radon, uranium mineral deposits emit a finite quantity of radiation that require precautions to protect workers at the mining site. Gamma radiation is the... [Pg.866]

The Mossbauer effect, discovered by Rudolf L. Mossbauer in 1957, can in short be described as the recoil-free emission and resonant absorption of gamma radiation by nuclei. In the case of iron, the source consists of Co, which decays with a half-life of 270 days to an excited state of Fe (natural abundance in iron 2%). The latter, in turn, decays rapidly to the first excited state of this isotope. The final decay generates a 14.4 keV photon and a very narrow natural linewidth of the order of nano eV. [Pg.147]

The metal is radioactive and does not occur in nature, as the half-life of all isotopes is shorter than 5 million years. It is found in readily isol-able amounts in nuclear reactors. It is an effective "rust-preventer" for iron and steel in special applications. The metastable isotope "Tc has a half-life of only 6 hours and is therefore used as a gamma radiator in medicine (radiation therapy and diagnostics). Of very little commercial importance. [Pg.134]

Some radioisotopes decay emitting only gamma rays, but many do so by the concurrent emission of beta and gamma radiation. The rate at which radiation is emitted from the nuclei of different radioisotopes varies considerably. Each radioisotope has a unique form of decay that is characterized by its half-life (tV2), the time it takes for the radioactivity of the radioisotope to decrease by one-half of its original value (see Textbox 14). [Pg.72]

Most radioactive nuclides employed in radiopharmaceuticals have a short half-life. This is beneficial to the patient as the total number of radioactive atoms given to the patient to produce an image is small when the half-life of the radioactive nuelide is short, as compared to longer half-life radioactive nuclides. Fewer total atoms reduce the radiation dose to the patient and thus the risk from a nuclear medi-eine procedure. However, the short half-life of the radioactive nuclide results in a short shelf-life for the radiopharmaeeutical. As a result, most radiopharmaceuticals are eompounded on a daily basis. The most common radioactive nuclide used for this purpose is technetium-99m (Te-99m) with a half-life of 6 hr, emiting only gamma radiation with an energy almost ideal for detection. [Pg.16]

ISOTOPES Cs-133 is the only stable isotope of cesium, and it makes up all of the naturally occurring cesium found in the Earth s crust. In addition to Cs-133 there are about 36 radioactive isotopes of Cs, most of which are artificially formed in nuclear reactors. All are produced in small numbers of atoms with relatively short half-lives. The range of Cs isotopes is from Cs-113 (amu = 112.94451) to Cs-148 (amu = 147.94900). Most of these radioisotopes produce beta radiation as they rapidly decay, with the exception of Cs-135, which has a half-life of 3x10 yr, which makes it a useful research tool. Cs-137, with a half-life of 33 years, produces both beta and gamma radiation. [Pg.60]

The radioisotope cobalt-60, with a half-life of 5.27 years (1925.3 days) through beta ((3) emission, decays to form the stable element nickel-60. It is used to test welds and metal casts for flaws, to irradiate food crops to prolong freshness, as a portable source of ionizing gamma (Y) radiation, for radiation research, and for a medical source of radiation to treat cancers and other diseases. [Pg.107]

The examples for radioactive labeling by phosphorus-32 ( P) and iodine-125 ( 1) in this chapter were chosen for two reasons on one hand, they are relatively easy to do, and on the other hand, the measurement of radioactivity is simple. is counted in water in a liquid scintillation counter by measuring the Cerenkov radiation and is measured in a gamma counter. Both isotopes may be detected also by autoradiography. A further advantage of both isotopes is their short half-life, which eases the disposal of nuclear waste. [Pg.182]

The concentration of silver nanoparticles and ions in solntions was determined by neutron activation analysis [15]. Samples were irradiated in the nuclear reactor at the Institute of Nuclear Physics, Tashkent, Uzbekistan. The product of nuclear reaction ° Ag(n,y)" Ag has the half-life Tj j=253 days. The silver concentration was determined by measnring the intensity of gamma radiation with the energy of 0.657 MeV and 0.884 MeV emitted by "" Ag. A Ge(Li) detector with a resolution of about 1.9 keV at 1.33 MeV and a 6,144-channel analyzer were used for recording gamma-ray quanta. [Pg.171]

A variety of radioactive isotopes is available having gamma rays diller-ing in penetrating ability, and with half-lives varying from a few minutes to many years. Radioactive iodine with an 8 day half-life and radioactive bromine with a l -day half-life were used for most tests. Radiation from these isotopes passes easily through the walls of pipe found in the oil field. [Pg.193]

Rutherford was awarded a scholarship to be a research student at the University of Cambridge and began research under J.J. Thomson. He soon abandoned research on his radio wave detector to work on the power of X-rays to confer electric charge on gases but soon turned to researching the problem of the rays emitted by thonum. Rutherford found three kinds of radiation, which he named alpha, beta, and gamma. In collaboration with Frederick Soddy, he was able to isolate a substance, thorium X, and identify the phenomenon of radioactive half-life and formulated an explanation of radioactivity. Rutherford was awarded the 1908 Nobel Prize for chemistry for his work in radioactivity. [Pg.1453]

Radioactivity is the spontaneous emission of radiation from an unstable nucleus. Alpha (a) radiation consists of helium nuclei, small particles containing two protons and two neutrons (fHe). Beta (p) radiation consists of electrons ( e), and gamma (y) radiation consists of high-energy photons that have no mass. Positron emission is the conversion of a proton in the nucleus into a neutron plus an ejected positron, e or /3+, a particle that has the same mass as an electron but an opposite charge. Electron capture is the capture of an inner-shell electron by a proton in the nucleus. The process is accompanied by the emission of y rays and results in the conversion of a proton in the nucleus into a neutron. Every element in the periodic table has at least one radioactive isotope, or radioisotope. Radioactive decay is characterized kinetically by a first-order decay constant and by a half-life, h/2, the time required for the... [Pg.978]


See other pages where Gamma radiation, half-lives is mentioned: [Pg.378]    [Pg.529]    [Pg.378]    [Pg.367]    [Pg.475]    [Pg.1059]    [Pg.366]    [Pg.385]    [Pg.267]    [Pg.886]    [Pg.953]    [Pg.54]    [Pg.227]    [Pg.6]    [Pg.256]    [Pg.702]    [Pg.11]    [Pg.27]    [Pg.787]    [Pg.209]    [Pg.922]    [Pg.25]    [Pg.54]    [Pg.128]    [Pg.216]    [Pg.110]    [Pg.319]    [Pg.703]    [Pg.1412]    [Pg.1413]    [Pg.166]    [Pg.298]    [Pg.367]    [Pg.136]    [Pg.102]    [Pg.146]    [Pg.35]    [Pg.62]   
See also in sourсe #XX -- [ Pg.14 , Pg.46 ]




SEARCH



Gamma radiation

© 2024 chempedia.info