Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functionalizations silver nitrate

The impact that a silver compound has in water is a function of the free or weaMy complexed silver ion concentration generated by that compound, not the total silver concentration (3—5,27,40—42). In a standardized, acute aquatic bioassay, fathead minnows were exposed to various concentrations of silver compounds for a 96-h period and the concentration of total silver lethal to half of the exposed population (96-h LC q) deterrnined. For silver nitrate, the value obtained was 16 )-lg/L. For silver sulfide and silver thiosulfate complexes, the values were >240 and >280 mg/L, respectively, the highest concentrations tested (27). [Pg.92]

Using the data obtained from the silver nitrate experiments, we have derived a simple approximation to calculate the cavity polarisability as a function of diameter [22]. If we apply this model to cobalt nitrate, the derived threshold for filling is 0.8 nm [32] this result qualitatively agrees with our observations that cobalt nitrate-filled cavities are much narrower ( 2 nm) than obtained with silver nitrate (= 4 nm). [Pg.140]

Silver and mercury salts have a long history of use as antibacterial agents.241-243 The use of mercurochrome ((40), Figure 18) as a topical disinfectant is now discouraged. Silver sulfadiazene (38) finds use for treatment of severe burns the polymeric material slowly releases the antibacterial Ag+ ion. Silver nitrate is still used in many countries to prevent ophthalmic disease in newborn children.244 The mechanism of action of Ag and Hg is through slow release of the active metal ion—inhibition of thiol function in bacterial cell walls gives a rationale for the specificity of bacteriocidal action. [Pg.830]

An extension of the research on silver complexes with Lewis base-functionalized mono(A-heterocyclic carbene) ligands has been made toward the better-studied and stronger coordinating phosphine systems. The reaction of a diphenylphosphine-functionalized imidazolium salt with silver oxide in dichloromethane affords a trinuclear silver carbene complex 50, as confirmed by electrospray-ionization mass spectrometry.96,97 Metathesis reaction of 50 in methanol using silver nitrate gives 51 in 33% yield. The crystal structures of 51 were found to be different when different solvents were used during crystallization (Scheme 12).97 One NO3- anion was found to be chelated to... [Pg.213]

Thus, the N,N-dibenzyl-protected aminonitrile 55 was prepared via Swern oxidation of N,N-dibenzylaminoethanol 54 followed by treatment with the enantio-pure amine auxiliary (S,S)-53 and HCN, resulting in the formation of a 3 2 epimeric mixture of the aminonitriles 55 in 55% yield, from which the single dia-stereomers could be isolated by chromatography. After lithiation with LDA, addition to the requisite (E)-a, P-unsaturated esters and hydrolysis of the aminonitrile moiety with silver nitrate, the desired a-amino keto esters R)-S6 were obtained with yields of 65-81% and enantiomeric excesses ee of 78-98%, which could be improved to ee > 98% by a simple recrystallization. Since the amino ketone functionality can be cleaved oxidatively, the 5-amino-4-oxo-esters 56 could be transformed to the corresponding succinic half-esters 57 with hydrogen peroxide in methanol in good to excellent yields (68-90%) (Scheme 1.1.15). [Pg.15]

Based on our previous results on the nucleophilic alkenoylation of aldehydes via metallated a, 3-unsaturated aminonitriles [50], we now envisaged an enanti-oselective variant. Thus, the enantiopure a-aminonitriles 60 were metallated with LDA and by reaction with aldehydes the adducts 61 could be obtained. Subsequent cleavage of the aminonitrile function with silver nitrate led to the desired a -hydroxyenones 62 in overall yields of 29-80% and enantiomeric excesses ee of 50-69%. Alternatively, the conjugate addition of the lithiated aminonitrile 63 to t-butyl crotonate led to the y-keto ester 63 in 35% yield and an enantiomeric excess ee of >90% (Scheme 1.1.18). [Pg.17]

Neutral diazafluorenone Schiff-base functionalized monolayers floating on aqueous silver nitrate solution Ag Dendritic silver particulate films generated electrochemically at the monolayer surface 56... [Pg.212]

With this loss of an ammonia molecule, however, a simultaneous change in function of one acid residue X = chloride k>n occurs. [In] Co(NH3)5CI3. . . two chlonnc atoms behave as ions and are precipitated by silver nitrate at room lempenilure. while the third behaves completely analogously to chlorine in chlo roethane. that is, it no longer acts as an ion. ... [Pg.206]

Heavy-metal salts, particularly those of silver, mercury, and copper, catalyze SX1 reactions of alkyl halides in much the same way that acids catalyze the SN reactions of alcohols. A heavy-metal ion functions by com-plexing with the unshared electrons of the halide, thereby making the leaving group a metal halide rather than a halide ion. This acceleration of the rates of halide reactions is the basis for a qualitative test for alkyl halides with silver nitrate in ethanol solution ... [Pg.234]

Allenes can also act as the -participant in electrophilic heteroatom cyclizations. Reviews of electrophilic additions to allenes discuss early examples of this type of cyclization.ld le-202 Numerous examples of cyclizations of a-functionalized allenes, including carboxylic acids, phosphonates, sulfinates and alcohols, to form five-membered heterocycles (equation 84) are cited in these reviews. The silver nitrate-mediated conversion of ot-allenic alcohols to 2,5-dihydrofurans203 has recently been applied to trimethylsilyl-substituted systems.204... [Pg.395]

To reduce the relatively large volume of silver nitrate solution held in the flash tank portion of the plant shown in Figure 13.11, Bessarabov et al. [30] have proposed using two membrane contactors in series, as shown in Figure 13.12. One contactor functions as an absorber, the other as a stripper. The first contactor removes ethylene from the pressurized feed gas into cold silver nitrate solution. The solution is then warmed and pumped to the second contactor where ethylene is desorbed from the silver nitrate solution into a low-pressure product ethylene gas stream. The regenerated silver nitrate solution is cooled and returned to the first contactor. [Pg.505]

In an approach to direct C-functionalization of triazolo[4,5-c]pyridines, shown in Scheme 3, 1-methyl (or phenyl)[l,2,3]triazolo[4,5-c]pyridines (26,33) are alkylated exclusively at C-4 by radicals generated by decarboxylation of carboxylic acids (ammonium persulfate-sulfuric acid-silver nitrate) <90ZOB683>. However, with /-butanol various products are obtained depending on the catalyst employed. For example, with ammonium persulfate-sulfuric acid-silver nitrate, exclusive C(4)-methylation (34) was observed, while ammonium persulfate-sulfuric acid gave exclusively C(4)-/ -hydroxy-/ ,/ -dimethylethylation (cf. (36)). The /-butyl analogue (35) was obtained by decarboxylation of pivalic acid. [Pg.368]


See other pages where Functionalizations silver nitrate is mentioned: [Pg.1057]    [Pg.1059]    [Pg.59]    [Pg.91]    [Pg.150]    [Pg.142]    [Pg.1057]    [Pg.1059]    [Pg.353]    [Pg.854]    [Pg.395]    [Pg.376]    [Pg.98]    [Pg.113]    [Pg.300]    [Pg.344]    [Pg.79]    [Pg.90]    [Pg.1057]    [Pg.1059]    [Pg.627]    [Pg.636]    [Pg.947]    [Pg.1232]    [Pg.27]    [Pg.54]    [Pg.55]    [Pg.19]    [Pg.219]    [Pg.20]    [Pg.228]    [Pg.159]    [Pg.718]    [Pg.1039]    [Pg.562]    [Pg.281]    [Pg.1232]    [Pg.252]    [Pg.39]   
See also in sourсe #XX -- [ Pg.624 , Pg.625 ]




SEARCH



Nitrations silver® nitrate

Silver nitrate

© 2024 chempedia.info