Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid fugacity

The properties of the solids most commonly encountered are tabulated. An important problem arises for petroleum fractions because data for the freezing point and enthalpy of fusion are very scarce. The MEK (methyl ethyl ketone) process utilizes the solvent s property that increases the partial fugacity of the paraffins in the liquid phase and thus favors their crystallization. The calculations for crystallization are sensitive and it is usually necessary to revert to experimental measurement. [Pg.172]

The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows For a pure solid or liquid, the standard state is the substance in the condensed phase under a pressure of 1 atm (101 325 Pa). For a gas, the standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure. [Pg.532]

II The increment in the free energy, AF, in the reaction of forming the given substance in its standard state from its elements in their standard states. The standard states are for a gas, fugacity (approximately equal to the pressure) of 1 atm for a pure liquid or solid, the substance at a pressure of 1 atm for a substance in aqueous solution, the hyj)othetical solution of unit molahty, which has all the properties of the infinitely dilute solution except the property of concentration. [Pg.239]

In Chapter 5, we considered systems in which composition becomes a variable, and defined and described the chemical potential. We showed that the chemical potential provides the condition for spontaneity or equilibrium. It is the potential that drives the flow of mass in a chemical process, A useful quantity related to the chemical potential is the fugacity. It can also be thought of as a measure of the flow of mass in a chemical process, and can be used to determine the point of equilibrium. It is often known as the escaping tendency since it can be used to describe the ease with which mass flows from one phase to another, particularly the flow from a solid or liquid phase to a gas phase. [Pg.247]

The defining equation for fugacity fc in a condensed phase (solid or liquid) is the same as in the gas phase... [Pg.259]

The second part of the definition for fugacity requires that k - l, since, in theory, any solid or liquid taken to zero pressure would eventually be a gas for which f=p so that k equals one. [Pg.259]

Standard States for Pure Solids and Pure Liquids For condensed phases, the pure solid or liquid under 1 bar (100 kPa) external pressure is usually chosen as the standard state. With this choice, the standard state fugacity is given by... [Pg.285]

We now have the foundation for applying thermodynamics to chemical processes. We have defined the potential that moves mass in a chemical process and have developed the criteria for spontaneity and for equilibrium in terms of this chemical potential. We have defined fugacity and activity in terms of the chemical potential and have derived the equations for determining the effect of pressure and temperature on the fugacity and activity. Finally, we have introduced the concept of a standard state, have described the usual choices of standard states for pure substances (solids, liquids, or gases) and for components in solution, and have seen how these choices of standard states reduce the activity to pressure in gaseous systems in the limits of low pressure, to concentration (mole fraction or molality) in solutions in the limit of low concentration of solute, and to a value near unity for pure solids or pure liquids at pressures near ambient. [Pg.383]

The equilibrium constants are based on a standard state of unit fugacity for the gaseous species and on a standard state corresponding to the pure solid for carbon. [Pg.22]

An attractive feature of K<)A is that it can replace the liquid or supercooled liquid vapor pressure in a correlation. K,-ja is an experimentally measurable or accessible quantity, whereas the supercooled liquid vapor pressure must be estimated from the solid vapor pressure, the melting point and the entropy of fusion. The use of KOA thus avoids the potentially erroneous estimation of the fugacity ratio, i.e., the ratio of solid and liquid vapor pressures. This is especially important for solutes with high melting points and, thus, low fugacity ratios. [Pg.4]

Saturation properties such as solubility in water and vapor pressure can be measured directly for solids and liquids. For certain purposes it is useful to estimate the solubility that a solid substance would have if it were liquid at a temperature below the melting point. For example, naphthalene melts at 80°C and at 25°C the solid has a solubility in water of 33 g/m3 and a vapor pressure of 10.9 Pa. If naphthalene was a liquid at 25°C it is estimated that its solubility would be 115 g/m3 and its vapor pressure 38.1 Pa, both a factor of 3.5 greater. This ratio of solid to liquid solubilities or vapor pressures is referred to as the fugacity ratio. It is 1.0 at the melting point and falls, in this case at lower temperatures to 0.286 at 25°C. [Pg.9]

Measurements of gas chromatographic retention time are often used as a fast and easy method of estimating vapor pressure. These estimated pressures are related to the gas/substrate partition coefficient, which can be regarded as a ratio of solubility of the substance in the gas to that in the substrate, both solubilities being of the substance in the liquid state. As a result the estimated vapor pressures are of the liquid state. To obtain the solid vapor pressure requires multiplication by the fugacity ratio. It is important to establish if the estimated and reported property is of the vapor or liquid. [Pg.9]

QSPRs in which solubilities and vapor pressures are correlated against molecular structure are done exclusively using the liquid state property. This avoids the complication introduced by the effect of fugacity ratio or melting point on the solid state property. [Pg.9]

As was discussed earlier in Section 1.2.8 a complication arises in that two of these properties (solubility and vapor pressure) are dependent on whether the solute is in the liquid or solid state. Solid solutes have lower solubilities and vapor pressures than they would have if they had been liquids. The ratio of the (actual) solid to the (hypothetical supercooled) liquid solubility or vapor pressure is termed the fugacity ratio F and can be estimated from the melting point and the entropy of fusion. This correction eliminates the effect of melting point, which depends on the stability of the solid crystalline phase, which in turn is a function of molecular symmetry and other factors. For solid solutes, the correct property to plot is the calculated or extrapolated supercooled liquid solubility. This is calculated in this handbook using where possible a measured entropy of fusion, or in the absence of such data the Walden s Rule relationship suggested by Yalkowsky (1979) which implies an entropy of fusion of 56 J/mol-K or 13.5 cal/mol-K (e.u.)... [Pg.15]

Heats of fusion, AHfus, are generally expressed in kcal/mol or kJ/mol and entropies of fusion, ASlus in cal/mol-K (e.u. or entropy unit) or J/mol K. The fugacity ratio F, as discussed in Section 1.2.8, is used to calculate the supercooled liquid vapor pressure or solubility for correlation purposes. In the case of liquids such as benzene, it is 1.0. For solids it is a fraction representing the ratio of solid-to-liquid solubility or vapor pressure. [Pg.29]


See other pages where Solid fugacity is mentioned: [Pg.425]    [Pg.425]    [Pg.149]    [Pg.151]    [Pg.171]    [Pg.101]    [Pg.211]    [Pg.143]    [Pg.146]    [Pg.151]    [Pg.410]    [Pg.260]    [Pg.260]    [Pg.261]    [Pg.660]    [Pg.662]    [Pg.384]    [Pg.297]    [Pg.107]    [Pg.331]    [Pg.9]    [Pg.15]    [Pg.670]    [Pg.688]    [Pg.692]    [Pg.700]    [Pg.711]    [Pg.728]    [Pg.750]    [Pg.760]    [Pg.772]    [Pg.789]    [Pg.796]    [Pg.800]    [Pg.805]    [Pg.811]   
See also in sourсe #XX -- [ Pg.27 ]

See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Fugacity

Fugacity in the Solid Phase

Fugacity of a solid

Solid Electrolyte Fugacity Sensors

Solids, Liquids and the Fugacity Ratio

The Fugacity of Pure Liquids and Solids

© 2024 chempedia.info