Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From pentose phosphate pathway

Most of the enzymes mediating the reactions of the Calvin cycle also participate in either glycolysis (Chapter 19) or the pentose phosphate pathway (Chapter 23). The aim of the Calvin scheme is to account for hexose formation from 3-phosphoglycerate. In the course of this metabolic sequence, the NADPH and ATP produced in the light reactions are consumed, as indicated earlier in Equation (22.3). [Pg.733]

NADPH can be produced in the pentose phosphate pathway as well as by malic enzyme (Figure 25.1). Reducing equivalents (electrons) derived from glycolysis in the form of NADH can be transformed into NADPH by the combined action of malate dehydrogenase and malic enzyme ... [Pg.805]

The following compound is an intermediate in the pentose phosphate pathway, an alternative route for glucose metabolism. Identify the sugar it is derived from. [Pg.1172]

A number of lyases are known which, unlike the aldolases, require thiamine pyrophosphate as a cofactor in the transfer of acyl anion equivalents, but mechanistically act via enolate-type additions. The commercially available transketolase (EC 2.2.1.1) stems from the pentose phosphate pathway where it catalyzes the transfer of a hydroxyacetyl fragment from a ketose phosphate to an aldehyde phosphate. For synthetic purposes, the donor component can be replaced by hydroxypyruvate, which forms the reactive intermediate by an irreversible, spontaneous decarboxylation. [Pg.595]

The pentose phosphate pathway is an alternative route for the metabolism of glucose. It does not generate ATP but has two major functions (1) The formation of NADPH for synthesis of fatty acids and steroids and (2) the synthesis of ribose for nucleotide and nucleic acid formation. Glucose, fructose, and galactose are the main hexoses absorbed from the gastrointestinal tract, derived principally from dietary starch, sucrose, and lactose, respectively. Fructose and galactose are converted to glucose, mainly in the liver. [Pg.163]

Figure 20-h Flow chart of pentose phosphate pathway and its connections with the pathway of glycolysis. The full pathway, as indicated, consists of three interconnected cycles in which glucose 6-phosphate is both substrate and end product. The reactions above the broken line are nonreversible, whereas all reactions under that line are freely reversible apart from that catalyzed by fructose-1,6-bisphosphatase. [Pg.164]

Although glucose 6-phosphate is common to both pathways, the pentose phosphate pathway is markedly different from glycolysis. Oxidation utilizes NADP rather than NAD, and CO2, which is not produced in glycolysis, is a characteristic product. No ATP is generated in the pentose phosphate pathway, whereas ATP is a major product of glycolysis. [Pg.166]

Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)... Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)...
D-Xylulose 5-phosphate (ii-threo-2-pentulose 5-phosphate, XP) stands as an important metabolite of the pentose phosphate pathway, which plays a key fimction in the cell and provides intermediates for biosynthetic pathways. The starting compound of the pathway is glucose 6-phosphate, but XP can also be formed by direct phosphorylation of D-xylulose with li-xylulokinase. Tritsch et al. [114] developed a radiometric test system for the measurement of D-xylulose kinase (XK) activity in crude cell extracts. Aliquots were spotted onto silica plates and developed in n-propyl alcohol-ethyl acetate-water (6 1 3 (v/v) to separate o-xylose/o-xylulose from XP. Silica was scraped off and determined by liquid scintillation. The conversion rate of [ " C]o-xylose into [ " C]o-xylulose 5-phosphate was calculated. Some of the works devoted to the separation of components necessary while analyzing enzyme activity are presented in Table 9.8. [Pg.227]

The NADPH is produced from glucose 6-phosphate in the first three reactions in the pentose phosphate pathway (see below). Hence the pentose phosphate pathway is essential in the erythrocyte and glycolysis provides the substrate glucose 6-phosphate. Individuals with a reduced amount of glucose 6-phosphate dehydrogenase can suffer from oxidative damage to their cells and hence haemolysis. [Pg.107]

Figure 20.9 The positions in the pathway for de novo pyrimidine nucleotide synthesis where GLUCOSE provides the ribose molecule and GLUTAMINE provides nitrogen atoms. Glucose forms ribose 5-phosphate, via the pentose phosphate pathway (see chapter 6), which enters the pathway, after phosphorylation, as 5-phospho-ribosyl 1-pyrophosphate. Glutamine provides the nitrogen atom to synthesise carbamoylphos-phate (with formation of glutamate), and also to form cytidine triphosphate (CTP) from uridine triphosphate (UTP), catalysed by the enzyme CTP synthetase. It is the amide nitrogen of glutamine that is the nitrogen atom that is provided in these reactions. Figure 20.9 The positions in the pathway for de novo pyrimidine nucleotide synthesis where GLUCOSE provides the ribose molecule and GLUTAMINE provides nitrogen atoms. Glucose forms ribose 5-phosphate, via the pentose phosphate pathway (see chapter 6), which enters the pathway, after phosphorylation, as 5-phospho-ribosyl 1-pyrophosphate. Glutamine provides the nitrogen atom to synthesise carbamoylphos-phate (with formation of glutamate), and also to form cytidine triphosphate (CTP) from uridine triphosphate (UTP), catalysed by the enzyme CTP synthetase. It is the amide nitrogen of glutamine that is the nitrogen atom that is provided in these reactions.
The deoxyribonucleotides, except for deoxythymidine nucleotide, are formed from the ribonucleotides by the action of an enzyme complex, which comprises two enzymes, ribonucleoside diphosphate reductase and thioredoxin reductase (Figure 20.11). The removal of a hydroxyl group in the ribose part of the molecule is a reduction reaction, which requires NADPH. This is generated in the pentose phosphate pathway. (Note, this pathway is important in proliferating cells not only for generation... [Pg.458]

The pentose phosphate pathway (PPP, also known as the hexose monophosphate pathway) is an oxidative metabolic pathway located in the cytoplasm, which, like glycolysis, starts from glucose 6-phosphate. It supplies two important precursors for anabolic pathways NADPH+H+, which is required for the biosynthesis of fatty acids and isopren-oids, for example (see p. 168), and ribose 5-phosphate, a precursor in nucleotide biosynthesis (see p. 188). [Pg.152]

The first step is carboxylation of acetyl CoA to malonyl CoA. This reaction is catalyzed by acetyl-CoA carboxylase [5], which is the key enzyme in fatty acid biosynthesis. Synthesis into fatty acids is carried out by fatty acid synthase [6]. This multifunctional enzyme (see p. 168) starts with one molecule of ace-tyl-CoA and elongates it by adding malonyl groups in seven reaction cycles until palmi-tate is reached. One CO2 molecule is released in each reaction cycle. The fatty acid therefore grows by two carbon units each time. NADPH+H is used as the reducing agent and is derived either from the pentose phosphate pathway (see p. 152) or from isocitrate dehydrogenase and malic enzyme reactions. [Pg.162]

Alkaloid biosynthesis needs the substrate. Substrates are derivatives of the secondary metabolism building blocks the acetyl coenzyme A (acetyl-CoA), shikimic acid, mevalonic acid and 1-deoxyxylulose 5-phosphate (Figure 21). The synthesis of alkaloids starts from the acetate, shikimate, mevalonate and deoxyxylulose pathways. The acetyl coenzyme A pathway (acetate pathway) is the source of some alkaloids and their precursors (e.g., piperidine alkaloids or anthraniUc acid as aromatized CoA ester (antraniloyl-CoA)). Shikimic acid is a product of the glycolytic and pentose phosphate pathways, a construction facilitated by parts of phosphoenolpyruvate and erythrose 4-phosphate (Figure 21). The shikimic acid pathway is the source of such alkaloids as quinazoline, quinoline and acridine. [Pg.67]

Ribose 5-phosphate derived from the pentose phosphate pathway or from dietary sources is the starting material that eventually gives rise to inosine monophosphate (IMP) (Figure 10-1). [Pg.140]


See other pages where From pentose phosphate pathway is mentioned: [Pg.301]    [Pg.49]    [Pg.301]    [Pg.49]    [Pg.587]    [Pg.766]    [Pg.768]    [Pg.163]    [Pg.215]    [Pg.128]    [Pg.271]    [Pg.1508]    [Pg.151]    [Pg.152]    [Pg.92]    [Pg.259]    [Pg.86]    [Pg.140]    [Pg.22]    [Pg.153]    [Pg.153]    [Pg.166]    [Pg.199]    [Pg.202]    [Pg.169]    [Pg.113]    [Pg.393]    [Pg.613]    [Pg.38]    [Pg.99]    [Pg.64]    [Pg.68]   
See also in sourсe #XX -- [ Pg.649 , Pg.650 ]

See also in sourсe #XX -- [ Pg.649 , Pg.650 ]




SEARCH



NADPH from pentose phosphate pathway

Pentose phosphate pathway

© 2024 chempedia.info