Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts reactions iron chloride

The chlorination of benzene can theoretically produce 12 different chlorobenzenes. With the exception of 1,3-dichlorobenzene, 1,3,5-trichlorobenzene, and 1,2,3,5-tetrachlorobenzene, all of the compounds are produced readily by chlorinating benzene in the presence of a Friedel-Crafts catalyst (see Friedel-CRAFTS reactions). The usual catalyst is ferric chloride either as such or generated in situ by exposing a large surface of iron to the Hquid being chlorinated. With the exception of hexachlorobenzene, each compound can be further chlorinated therefore, the finished product is always a mixture of chlorobenzenes. Refined products are obtained by distillation and crystallization. [Pg.46]

Lewis acid catalysts such as aluminum chloride and iron(III) halides also bond to nitrogen to strongly deactivate the ring toward Friedel-Crafts reactions and halogenation. [Pg.507]

The chloride is usually (but not always) stabilised in storage by addition of aqueous alkali or anhydrous amines as acid acceptors. A 270 kg batch which was not stabilised polymerised violently when charged into a reactor. Contact of the chloride (slightly hydrolysed and acidic) with rust led to formation of ferric chloride which catalysed an intermolecular Friedel-Craft reaction to form polybenzyls with evolution of further hydrogen chloride. Contact of unstabilised benzyl chloride with aluminium, iron or rust should be avoided to obviate the risk of polycondensation. See Benzyl bromide Molecular sieve... [Pg.899]

The molten material, after holding for 4 h at 78°C in a stainless steel vessel, underwent a thermal runaway reaction and 500 kg erupted through the vent line. It was later found that addition of 0.1% of rust to the hot material led to an accelerating self-condensation Friedel-Craft reaction, catalysed by iron(III) chloride, which led to formation of poly-benzyls accompanied by evolution of hydrogen chloride. [Pg.972]

Diethylamino)sulfur trifluoride, 110 Formylation (see also Carbonylation) Vilsmeier reagent, 341 Fragmentation reactions Cerium(IV) ammonium nitrate, 67 Copper(II) acetate-Iron(II) sulfate, 85 Lead tetraacetate, 155 Friedel-Crafts alkylation Aluminum chloride, 15... [Pg.365]

Benzylation of toluene with benzyl chloride, which is a typical example of Friedel-Crafts alkylation, is known to be catalyzed by Lewis-type superacids such as A1C13 and BF3. This type of catalyst has been mostly used for the Friedel-Crafts reaction, which is one of the most studied of organic reactions. This reaction was performed over several metal oxides and sulfates, and iron sulfates showed an unexpected effectiveness for the reaction (102-104). The catalytic activities of FeS04 and Fe2(S04)3 for the reaction were examined in detail the activities were remarkably dependent on calcination temperature, the maximum activity being observed with calcination at 700°C (105-107). Catalytic actions analogous to the above case were also observed with other Friedel-Crafts reactions, the benzoyl-ation of toluene with benzoyl chloride (108), the isopropylation of toluene with isopropyl halides (109), and the polycondensation of benzyl chloride UIO). [Pg.177]

For the preparation of unsymmetrical ferrocenes, two ways by which only mono-substituted derivatives are produced have been suggested. One route starts from iron tetracarbonyl and a substituted cyclopenta-diene the other from monocyclopentadienyl iron dicarbonyl bromide, which on treatment with a substituted cyclopentadienyl lithium is finally converted into the corresponding mono-substituted ferrocene. Experience shows the first method to be more suitable for the preparation of aryl, and the latter method for the preparation of alkyl, derivatives (57). Corresponding work already carried out on substitution in Ru(C5H6)2 and Os CsH5)2 has also been fruitful. It is found that in the Friedel-Crafts reaction with acetyl or benzoyl chloride there is a distinct predominance of mono- over disubstitution as the atomic weight of the central atom increases (47, 72). [Pg.86]

Friedel-Crafts catalyst. Iron serves as a satisfactory catalyst for the reaction of phenolic ethers with f-butyi chloride.5... [Pg.391]

The most well-known method for the preparation of bis-(4-chloro-phenylj-sulfone is the Friedel-Crafts reaction of 4-chlorobenzenesulfonyl chloride with chlorobenzene, the catalyst used, for example, iron(III) chlor-... [Pg.241]

Under Friedel-Crafts reaction conditions, acetyl chloride acylates butadiene and 2,3-dimethylbutadiene in iron derivatives in the presence of AlCl, in CHCI3 or CCI4 solution [equation (8.59)]. [Pg.498]

The by far strongest known Lewis acid is antimony pentafluoride, SbFj. Metal fluorides of aluminum, iron, chromium, etc., do not play a prominent role in this context, but instead the chlorides are considered as strong Lewis acids to be used, for example, in Friedel-Crafts reactions. In 1999, Christe et al. [59] introduced the pF scale that provided for the first time a quantification of Lewis acidity strength of metal fluorides and chlorides. Their approach is based on ab initio calculations of the free formation energies of the gas-phase reactions of molecular metal fluorides with a gaseous fluoride anion (Equation (6.11)) ... [Pg.147]

The Friedel-Crafts acylation reaction has also been performed in iron(III) chloride ionic liquids, by Seddon and co-workers [96]. An example is the acetylation of benzene (Scheme 5.1-66). Ionic liquids of the type [EMIM]Cl/FeCl3 (0.50 < X(FeCl3) < 0.62) are good acylation catalysts, with the added benefit that the ketone product of the reaction can be separated from the ionic liquid by solvent extraction, provided that X(FeCl3) is in the range 0.51-0.55. [Pg.207]

The ability of iron(III) chloride genuinely to catalyze Friedel-Crafts acylation reactions has also been recognized by Holderich and co-workers [97]. By immobilizing the ionic liquid [BMIM]Cl/FeCl3 on a solid support, Holderich was able to acetylate mesitylene, anisole, and m-xylene with acetyl chloride in excellent yield. The performance of the iron-based ionic liquid was then compared with that of the corresponding chlorostannate(II) and chloroaluminate(III) ionic liquids. The results are given in Scheme 5.1-67 and Table 5.1-5. As can be seen, the iron catalyst gave superior results to the aluminium- or tin-based catalysts. The reactions were also carried out in the gas phase at between 200 and 300 °C. The acetylation reac-... [Pg.207]

Proton acids can be used as catalysts when the reagent is a carboxylic acid. The mixed carboxylic sulfonic anhydrides RCOOSO2CF3 are extremely reactive acylating agents and can smoothly acylate benzene without a catalyst.265 With active substrates (e.g., aryl ethers, fused-ring systems, thiophenes), Friedel-Crafts acylation can be carried out with very small amounts of catalyst, often just a trace, or even sometimes with no catalyst at all. Ferric chloride, iodine, zinc chloride, and iron are the most common catalysts when the reactions is carried out in this manner.266... [Pg.540]

Acetylation and formylation are classical reactions in porphyrin chemistry. H. Fischer s synthesis of hemin, for which he was awarded the 1930 Nobel prize, required treatment of deuterohemin (49) with acetic anhydride (or acetyl chloride) in the presence of tin(IV) chloride as a Friedel-Crafts catalyst the product, 3,8-diacetyldeuterohemin-IX (50), was obtained in high yield. Fischer also accomplished formylation of iron porphyrins using dichloromethyl methyl ether and a Friedel-Crafts catalyst (B-37MI30700). Both of Fischer s examples resulted in peripheral substitution of unsubstituted iron porphyrins. However,... [Pg.395]


See other pages where Friedel-Crafts reactions iron chloride is mentioned: [Pg.507]    [Pg.282]    [Pg.192]    [Pg.184]    [Pg.178]    [Pg.1964]    [Pg.692]    [Pg.122]    [Pg.737]    [Pg.1963]    [Pg.434]    [Pg.284]    [Pg.713]    [Pg.3]    [Pg.1440]    [Pg.60]    [Pg.192]    [Pg.306]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Iron chlorid

Iron chloride

Iron reaction

© 2024 chempedia.info