Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts acylation compounds

The nitration, sulphonation and Friedel-Crafts acylation of aromatic compounds (e.g. benzene) are typical examples of electrophilic aromatic substitution. [Pg.155]

In each case the configuration around the boron changes from trigonal planar to tetrahedral on adduct formation. Because of this ability to form additional compounds, boron trifluoride is an important catalyst and is used in many organic reactions, notably polymerisation, esterification, and Friedel-Crafts acylation and alkylations. [Pg.154]

Because acylation of an aromatic ring can be accomplished without rearrangement it is frequently used as the first step m a procedure for the alkylation of aromatic compounds by acylation-reduction As we saw m Section 12 6 Friedel-Crafts alkylation of ben zene with primary alkyl halides normally yields products having rearranged alkyl groups as substituents When a compound of the type ArCH2R is desired a two step sequence IS used m which the first step is a Friedel-Crafts acylation... [Pg.486]

Friedel-Crafts acylation of aromatic compounds (Section 12 7) Acyl chlorides and carboxylic acid anhydrides acylate aromatic rings in the presence of alumi num chloride The reaction is electrophil ic aromatic substitution in which acylium ions are generated and attack the ring... [Pg.710]

Friedel-Crafts acylation (Section 12 7) An electrophilic aro matic substitution in which an aromatic compound reacts with an acyl chloride or a carboxylic acid anhydride in the presence of aluminum chlonde An acyl group becomes bonded to the nng... [Pg.1284]

ACYLATION OF ALIPHATIC COMPOUNDS Similar to alkylation, not only aromatic but also aliphatic and cycloaliphatic compounds undergo Friedel-Crafts acylation reactions. [Pg.561]

Anthraquinone dyes are derived from several key compounds called dye intermediates, and the methods for preparing these key intermediates can be divided into two types (/) introduction of substituent(s) onto the anthraquinone nucleus, and (2) synthesis of an anthraquinone nucleus having the desired substituents, starting from benzene or naphthalene derivatives (nucleus synthesis). The principal reactions ate nitration and sulfonation, which are very important ia preparing a-substituted anthraquiaones by electrophilic substitution. Nucleus synthesis is important for the production of P-substituted anthraquiaones such as 2-methylanthraquiQone and 2-chloroanthraquiaone. Friedel-Crafts acylation usiag aluminum chloride is appHed for this purpose. Synthesis of quinizatia (1,4-dihydroxyanthraquiQone) is also important. [Pg.309]

Birch reduction of indole with lithium metal in THF in the presence of trimethylsilyl chloride followed by oxidation with p-benzoquinone gave l,4-bis(trimethylsilyl)indoIe (106). This is readily converted in two steps into l-acetyl-4-trimethylsilylindole. Friedel-Crafts acylation of the latter compound in the presence of aluminum chloride yields the corresponding 4-acylindole (107) (82CC636). [Pg.61]

Friedel-Crafts acylation usually involves the reaction of an acyl halide, a Lewis acid catalyst, and the aromatic substrate. Several species may function as the active electrophile, depending on the reactivity of the aromatic compound. For activated aromatics, the electrophile can be a discrete positively charged acylium ion or the complex formed... [Pg.583]

What combination of acyl chloride or acid anhydride and arene would you choose to prepare each of the following compounds by Friedel-Crafts acylation ... [Pg.515]

Each of the compounds indicated undergoes an intramolecular Friedel-Crafts acylation reaction to yield a cyclic ketone. Write the structure of the expected product in each case. [Pg.516]

The most important method for the synthesis of aromatic ketones 3 is the Friedel-Crafts acylation. An aromatic substrate 1 is treated with an acyl chloride 2 in the presence of a Lewis-acid catalyst, to yield an acylated aromatic compound. Closely related reactions are methods for the formylation, as well as an alkylation procedure for aromatic compounds, which is also named after Friedel and Crafts. [Pg.116]

Drawbacks as known from the Friedel-Crafts alkylation are not found for the Friedel-Crafts acylation. In some cases a decarbonylation may be observed as a side-reaction, e.g. if loss of CO from the acylium ion will lead to a stable carbenium species 8. The reaction product of the attempted acylation will then be rather an alkylated aromatic compound 9 ... [Pg.117]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

While the Friedel-Crafts acylation is a general method for the preparation of aryl ketones, and of wide scope, there is no equivalently versatile reaction for the preparation of aryl aldehydes. There are various formylation procedures known, each of limited scope. In addition to the reactions outlined above, there is the Vdsmeier reaction, the Reimer-Tiemann reaction, and the Rieche formylation reaction The latter is the reaction of aromatic compounds with 1,1-dichloromethyl ether as formylating agent in the presence of a Lewis acid catalyst. This procedure has recently gained much importance. [Pg.135]

With a substituted aromatic ring compound 2, mixtures of isomeric coupling products may be formed the ort/zo-product usually predominates. The rules for regiochemical preferences as known from electrophilic aromatic substitution reactions (see for example Friedel-Crafts acylation), do not apply here. [Pg.141]

The initial series of major tranquilizers consists of alkylated derivatives of 4-aryl-4-hydroxypiperidines. Construction of this ring system is accomplished by a set of rather unusual reactions. Condensation of methylstyrenes with formaldehyde and ammonium chloride afford the corresponding hexahydro-1,3-oxazines (119). Heating these oxazines in the presence of acid leads to rearrangement with loss of water to the tetrahydropyridines. Scheme 1 shows a possible reaction pathway for these transformations. Addition of hydrogen bromide affords the expected 4-bromo compound (121). This last is easily displaced by water to lead to the desired alcohol (122) The side chain (123) is obtained by Friedel-Crafts acylation of p-fluorobenzene with 4-chloro-butyryl chloride. Alkylation of the appropriate arylpiperidinol with 123 affords the desired butyrophenone derivative. Thus,... [Pg.306]

Friedel-Crafts acylation reactions usually involve the interaction of an aromatic compound with an acyl halide or anhydride in the presence of a catalyst, to form a carbon-carbon bond [74, 75]. As the product of an acylation reaction is less reactive than its starting material, monoacylation usually occurs. The catalyst in the reaction is not a true catalyst, as it is often (but not always) required in stoichiometric quantities. For Friedel-Crafts acylation reactions in chloroaluminate(III) ionic liquids or molten salts, the ketone product of an acylation reaction forms a strong complex with the ionic liquid, and separation of the product from the ionic liquid can be extremely difficult. The products are usually isolated by quenching the ionic liquid in water. Current research is moving towards finding genuine catalysts for this reaction, some of which are described in this section. [Pg.203]

Diaryl sulfones can be formed by treatment of aromatic compounds with aryl sulfonyl chlorides and a Friedel-Crafts catalyst. This reaction is analogous to Friedel-Crafts acylation with carboxylic acid halides (11-14). In a better procedure, the aromatic compound is treated with an aryl sulfonic acid and P2O5 in polypho-sphoric acid. Still another method uses an arylsulfonic trifluoromethanesulfonic anhydride (ArS020S02CF3) (generated in situ from ArS02Br and CF3S03Ag) without a catalyst. ... [Pg.704]

An alternative route to anthraquinone, which involves Friedel-Crafts acylation, is illustrated in Scheme 4.3. This route uses benzene and phthalic anhydride as starting materials. In the presence of aluminium(m) chloride, a Lewis acid catalyst, these compounds react to form 2-benzoyl-benzene-1-carboxylic acid, 74. The intermediate 74 is then heated with concentrated sulfuric acid under which conditions cyclisation to anthraquinone 52 takes place. Both stages of this reaction sequence involve Friedel-Crafts acylation reactions. In the first stage the reaction is inter-molecular, while the second step in which cyclisation takes place, involves an intramolecular reaction. In contrast to the oxidation route, the Friedel-Crafts route offers considerable versatility. A range of substituted... [Pg.84]

The heat of decomposition (238.4 kJ/mol, 3.92 kJ/g) has been calculated to give an adiabatic product temperature of 2150°C accompanied by a 24-fold pressure increase in a closed vessel [9], Dining research into the Friedel-Crafts acylation reaction of aromatic compounds (components unspecified) in nitrobenzene as solvent, it was decided to use nitromethane in place of nitrobenzene because of the lower toxicity of the former. However, because of the lower boiling point of nitromethane (101°C, against 210°C for nitrobenzene), the reactions were run in an autoclave so that the same maximum reaction temperature of 155°C could be used, but at a maximum pressure of 10 bar. The reaction mixture was heated to 150°C and maintained there for 10 minutes, when a rapidly accelerating increase in temperature was noticed, and at 160°C the lid of the autoclave was blown off as decomposition accelerated to explosion [10], Impurities present in the commercial solvent are listed, and a recommended purification procedure is described [11]. The thermal decomposition of nitromethane under supercritical conditions has been studied [12], The effects of very high pressure and of temperature on the physical properties, chemical reactivity and thermal decomposition of nitromethane have been studied, and a mechanism for the bimolecular decomposition (to ammonium formate and water) identified [13], Solid nitromethane apparently has different susceptibility to detonation according to the orientation of the crystal, a theoretical model is advanced [14], Nitromethane actually finds employment as an explosive [15],... [Pg.183]

Friedel-Crafts acylation reactions of aromatics are promoted by Tilv complexes.104 In some cases, a catalytic amount of the titanium compound works well (Scheme 28). In addition to acyl halides or acid anhydrides, aldehydes, ketones, and acetals can serve as electrophile equivalents for this reaction.105 The formylation of aromatic substrates in the presence of TiCl4 is known as the Rieche-Gross formylation metalated aromatics or olefins are also formylated under these conditions.106... [Pg.411]

The first example of SILP-catalysis was the fixation of an acidic chloroaluminate ionic liquid on an inorganic support. The acidic anions of the ionic liquid, [AI2CI7] and [AI3CI10], react with free OH-groups of the surface to create an anionic solid surface with the ionic liquid cations attached [72]. The catalyst obtained was applied in the Friedel-Crafts acylation of aromatic compounds. Later, the immobilisation of acidic ionic liquids by covalent bonding of the ionic liquid cation to the surface was developed and applied again in Friedel-Crafts chemistry [73]. [Pg.203]

Compounds 1 and 2 were identified by FTIR and 13C-NMR. The 13C proton decoupled spectra for 1 and 2 are dominated by signals ranging from 62 to 195 ppm. The 13C chemical shift assignments were made based on comparisons with 4,4 -(hexafluoroisopropylidene)diphenol and from calculations based on substituted benzenes and naphthalenes.15 The 13C-NMR spectrum clearly showed that the Friedel-Crafts acylation of 1 by 4-fluorobenzoyl chloride yielded the 1,4-addition product exclusively. The 13C chemical shifts for 2 are listed in Table 8.1. The key structural features in the FTIR spectrum of2 include the following absorptions aromatic C-H, 3074 cnr1, ketone C=0, 1658 cm-1, aromatic ether Ar—0—Ar, 1245 cm-1, and C—F, 1175 cm-1. [Pg.116]

Aromatic compounds, 13 108-109 13 680. See also Aromatics acylation of, 12 173-181 amination of, 12 184 arylation of, 12 170-171 Cycloalkylation of, 12 169 in diesel fuel, 12 425 formylation of, 12 178 Friedel-Crafts acylation of, 12 174 Friedel-Crafts alkylation of, 12 164 nitration of, 12 182-183 oxidative coupling of, 19 654 sulfonation of, 12 181 sulfonation reagents for, 23 521-524 Aromatic-containing polymers, sulfonation of, 23 535-536... [Pg.70]


See other pages where Friedel-Crafts acylation compounds is mentioned: [Pg.762]    [Pg.762]    [Pg.535]    [Pg.557]    [Pg.557]    [Pg.383]    [Pg.334]    [Pg.564]    [Pg.72]    [Pg.86]    [Pg.104]    [Pg.713]    [Pg.1630]    [Pg.506]    [Pg.337]    [Pg.108]   
See also in sourсe #XX -- [ Pg.720 , Pg.721 ]




SEARCH



Acyl compounds

Friedel acylation

© 2024 chempedia.info