Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals molecular beams

The ideal free radical molecular beam sources for photodissociation dynamics studies should have the following features. [Pg.467]

Laser photolysis of a precursor may also be used to generate a reagent. In a crossed-beam study of the D + FI2 reaction [24], a hypertliennal beam of deuterium atoms (0.5 to 1 eV translational energy) was prepared by 248 mn photolysis of DI. This preparation method has been widely used for the preparation of molecular free radicals, both in beams and in experiments in a cell, with laser detection of the products. Laser photolysis as a method to prepare reagents in experiments in which the products are optically detected is fiirtlier discussed below. [Pg.2066]

In the following, an overview of the experimental approaches is presented, including the production and detection methods of free radicals and the techniques for studying free radical photodissociation in the molecular beam. The photochemistry of the free radical systems investigated recently will then be discussed in detail. [Pg.467]

Pyrolysis method involves thermal decomposition of suitable precursors to produce free radicals. Pyrolysis sources based on continuous molecular beam nozzles are well developed (for example, methyl6 8 and benzyl9). Recently, Chen and co-workers have pioneered a flash pyrolysis/supersonic jet technique to produce free radical beams (Fig. I).10 In this radical... [Pg.468]

The primary photochemical reaction for nitromethane in the gas phase is well supported by experiments to be the dissociation of the C—N bond (equation 98). The picosecond laser-induced fluorescence technique has shown that the ground state NO2 radical is formed in <5 ps with a quantum yield of 0.7 in 264-nm photolysis of nitromethane at low pressure120. The quantum yield of NO2 varies little with wavelength, but the small yields of the excited state NO2 radical increase significantly at 238 nm. In a crossed laser-molecular beam study of nitromethane, it was found that excitation of nitromethane at 266 nm did not yield dissociation products under collision-free conditions121. [Pg.795]

While one might expect that the techniques developed for photodissociation studies of closed-shell molecules would be readily adaptable to free radicals, this is not the case. A successful photodissociation experiment often requires a very clean source for the radical of interest in order to minimize background problems associated with photodissociating other species in the experiment. Thus, molecular beam photofragment translation spectroscopy, which has been applied to innumerable closed-shell species, has been used successfully on only a handful of free radicals. With this problem in mind, we have developed a conceptually different experiment [4] in which a fast beam of radicals is generated by laser photodetachment of mass-selected negative ions. The radicals are photodissociated with a second laser, and the fragments are detected in coinci-... [Pg.730]

The first successful application of molecular beam electric resonance to the study of a short-lived free radical was achieved by Meerts and Dymanus [142] in their study of OH. They were also able to report spectra of OD, SH and SD. Their electric resonance instrument was conventional except for a specially designed free radical source, in which OH radicals were produced by mixing H atoms, formed from a microwave discharge in H2, with N02 (or H2S in the case of SH radicals). In table 8.24 we present a complete A-doublet data set for OH, including the sets determined by Meerts and Dymanus, with J = 3/2 to 11/2 for the 2n3/2 state, and 1/2 to 9/2 for the 2ni/2 state. Notice that, for the lowest rotational level (7 = 3/2 in 2n3/2), the accuracy of the data is higher. These transitions were observed by ter Meulen and Dymanus [143], not by electric resonance methods, but by beam maser spectroscopy, with the intention of providing particularly accurate data for astronomical purposes. This is the moment for a small diversion into the world of beam maser spectroscopy. It has been applied to a large number of polyatomic molecules, but apparently OH is the only diatomic molecule to be studied by this method. [Pg.539]

We have already discussed the high-resolution spectroscopy of the OH radical at some length. It occupies a special place in the history of the subject, being the first short-lived free radical to be detected and studied in the laboratory by microwave spectroscopy. The details of the experiment by Dousmanis, Sanders and Townes [4] were described in section 10.1. It was also the first interstellar molecule to be detected by radio-astronomy. In chapter 8 we described the molecular beam electric resonance studies of yl-doubling transitions in the lowest rotational levels, and in chapter 9 we gave a comprehensive discussion of the microwave and far-infrared magnetic resonance spectra of OH. Our quantitative analysis of the magnetic resonance spectra made use of the results of pure field-free microwave studies of the rotational transitions, which we now describe. [Pg.788]

The mass spectrometer and its collimated molecular beam sampling system 6,12) have been especially designed for the study of reactive free radicals. [Pg.35]

The alkaline earth metals form a host of unique monovalent free radicals. Most of these molecules can be formed by the laser-driven chemical reactions of metal vapors with a wide variety of organic and inorganic molecules. This photochemical production of new molecules has led to an extensive gas-phase inorganic chemistry and spectroscopy of alkaline earth derivatives. In recent years, the Broida oven source has been displaced by the pulsed molecular beam spectrometer. The chemical dynamics and photochemistry of these new molecules are still at a very early stage of investigation. [Pg.56]


See other pages where Free radicals molecular beams is mentioned: [Pg.683]    [Pg.683]    [Pg.315]    [Pg.469]    [Pg.470]    [Pg.473]    [Pg.474]    [Pg.475]    [Pg.536]    [Pg.795]    [Pg.42]    [Pg.667]    [Pg.256]    [Pg.732]    [Pg.35]    [Pg.130]    [Pg.11]    [Pg.13]    [Pg.373]    [Pg.539]    [Pg.79]    [Pg.34]    [Pg.117]    [Pg.302]    [Pg.205]    [Pg.45]    [Pg.137]    [Pg.291]    [Pg.248]    [Pg.281]    [Pg.289]    [Pg.119]    [Pg.137]    [Pg.522]    [Pg.100]    [Pg.5]    [Pg.6]    [Pg.122]    [Pg.457]   
See also in sourсe #XX -- [ Pg.310 , Pg.314 ]




SEARCH



Molecular Radicals

Molecular beam

© 2024 chempedia.info