Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals photodissociation

In the following, an overview of the experimental approaches is presented, including the production and detection methods of free radicals and the techniques for studying free radical photodissociation in the molecular beam. The photochemistry of the free radical systems investigated recently will then be discussed in detail. [Pg.467]

It is clear that one of the major challenges in the experimental studies of free radicals is the preparation of radicals. The experimental designs (production of radicals and detection of radicals and photoproducts) are largely dependent on the particular radicals of interest. Nevertheless, many approaches have been taken, as seen in this review, to study the free radical photodissociation, and a great number of systems have been examined during the last couple of years. The sophistication in the experimental studies of free radical photochemistry has reached the level that has been available for the stable molecules. State-to-state photodissociation dynamics of free radicals have been demonstrated for a few small systems. Many more advances in the field of photodissociation dynamics of radicals are expected, and it is hoped that a more systematic and sophisticated understanding of free radical photochemistry can be developed. [Pg.514]

In the case of NO2, for each photon absorbed below 400 nm, photodissodation occurs. For other photoabsorbers, HNOj and aldehydes, the photodissociation process leads to the formation of free radicals. [Pg.172]

Irradiation of the molecular radical anion of DESO, which has a yellow color, with light of X = 350-400 nm partially restores the red color and the ESR spectrum of the radical-anion pair. Similarly to the case of DMSO-d6 a comparison of the energetics of the photodissociation of the radical anion and dissociative capture of an electron by a DESO molecule permits an estimation of the energy of the hot electrons which form the radical-anion pair of DESO. This energy is equal to 2eV, similarly to DMSO-d6. The spin density on the ethyl radical in the radical-anion pair of DESO can be estimated from the decrease in hfs in comparison with the free radical to be 0.81, smaller than DMSO-d6. [Pg.894]

The scope of this review focuses on photodissociation dynamics of free radicals in supersonic beam. The review concentrates on the new studies since the last review of this subject by Whitehead in 1996.1 Due to the recent advances in high-intensity lasers and product detection schemes, as... [Pg.466]

The ideal free radical molecular beam sources for photodissociation dynamics studies should have the following features. [Pg.467]

High intensity, with a high number density of radicals. This requirement is more desirable in the photodissociation study than in the spectroscopy study, as typically only a small fraction of the photoproducts of the radicals are detected, while in the spectroscopy study, the free radicals themselves are probed. [Pg.467]

Fig. 4. Fast radical beam photofragment translational spectrometer. A fast free radical beam is produced from photodetachment of anions in a mass selected beam. The free radicals are then photodissociated in the downstream. (From Cyr et al.59)... Fig. 4. Fast radical beam photofragment translational spectrometer. A fast free radical beam is produced from photodetachment of anions in a mass selected beam. The free radicals are then photodissociated in the downstream. (From Cyr et al.59)...
The general principle of detection of free radicals is based on the spectroscopy (absorption and emission) and mass spectrometry (ionization) or combination of both. An early review has summarized various techniques to detect small free radicals, particularly diatomic and triatomic species.68 Essentially, the spectroscopy of free radicals provides basic knowledge for the detection of radicals, and the spectroscopy of numerous free radicals has been well characterized (see recent reviews2-4). Two experimental techniques are most popular for spectroscopy studies and thus for detection of radicals laser-induced fluorescence (LIF) and resonance-enhanced multiphoton ionization (REMPI). In the photochemistry studies of free radicals, the intense, tunable and narrow-bandwidth lasers are essential for both the detection (via spectroscopy and photoionization) and the photodissociation of free radicals. [Pg.472]

The spectroscopy methods such as LIF and REMPI are utilized not only to detect the free radicals as discussed above, but also to directly measure the internal state distributions of the photoproducts in the photodissociation of free radicals. In this approach, the photochemistry is carried out in the free radical beam under single-collision conditions with well-defined... [Pg.474]


See other pages where Free radicals photodissociation is mentioned: [Pg.466]    [Pg.514]    [Pg.466]    [Pg.514]    [Pg.166]    [Pg.113]    [Pg.69]    [Pg.277]    [Pg.465]    [Pg.465]    [Pg.467]    [Pg.469]    [Pg.469]    [Pg.470]    [Pg.471]    [Pg.473]    [Pg.474]    [Pg.475]    [Pg.475]    [Pg.475]    [Pg.477]    [Pg.479]    [Pg.481]    [Pg.483]    [Pg.485]    [Pg.487]    [Pg.489]    [Pg.491]    [Pg.493]    [Pg.495]    [Pg.497]    [Pg.499]    [Pg.501]    [Pg.503]    [Pg.505]    [Pg.507]    [Pg.509]    [Pg.511]    [Pg.513]    [Pg.513]    [Pg.515]   
See also in sourсe #XX -- [ Pg.166 , Pg.172 ]




SEARCH



Photodissociating

Photodissociation

Photodissociation dynamics of free radicals

Photodissociation of free radicals

Photodissociation, free radical formation

Photodissociations

© 2024 chempedia.info