Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals agents

Polymerization. In the absence of inhibitors, acrolein polymerizes readily in the presence of anionic, cationic, or free-radical agents. The resulting polymer is an insoluble, highly cross-linked soHd with no known commercial use. [Pg.128]

Addition (or free radical) polymerization Polymerization in which monomers are added to the growing chains, initiated by free radical agents. [Pg.651]

Grape waste extract Human colon adenocarcinoma cells (Caco-2) Anti-free-radical agent and could exert a chemopreventive action. [90]... [Pg.244]

Uses Skin conditioner in cosmetics anti-free radical agent for hair/skin protection Trade Name Synonyms Antiglyskin [Silab http //www.silab.fr, R.I.T.A.. http //www.ritacorp.com], Helioxine [Silab http //www.silab.fr, R.I.T.A.. http //www.ritacorp.com]... [Pg.4273]

Methods for the incorporation of the graft nnit may include irradiation of the base polymer and mixing with the comonomer, or reaction as solids or solntions with free radical agents and blending techniques (see Chain polymerization, Radiation-cured adhesives). [Pg.546]

As we saw when discussing allylic brommation m Section 10 4 N bromosuccm imide (NBS) is a convenient free radical brommatmg agent Benzylic brommations with NBS are normally performed m carbon tetrachloride as the solvent m the presence of peroxides which are added as initiators As the example illustrates free radical bromi nation is selective for substitution of benzylic hydrogens... [Pg.442]

Halogenation (Section 11 12) Free radical halo genation of alkylbenzenes is highly selective for substitution at the benzylic position In the exam pie shown elemental bromine was used Alterna Lively N bromosuccinimide is a convenient re agent for benzylic bromination... [Pg.466]

Inhibitors slow or stop polymerization by reacting with the initiator or the growing polymer chain. The free radical formed from an inhibitor must be sufficiently unreactive that it does not function as a chain-transfer agent and begin another growing chain. Benzoquinone is a typical free-radical chain inhibitor. The resonance-stabilized free radical usually dimerizes or disproportionates to produce inert products and end the chain process. [Pg.1010]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Suspension polymerization of VDE in water are batch processes in autoclaves designed to limit scale formation (91). Most systems operate from 30 to 100°C and are initiated with monomer-soluble organic free-radical initiators such as diisopropyl peroxydicarbonate (92—96), tert-huty peroxypivalate (97), or / fZ-amyl peroxypivalate (98). Usually water-soluble polymers, eg, cellulose derivatives or poly(vinyl alcohol), are used as suspending agents to reduce coalescence of polymer particles. Organic solvents that may act as a reaction accelerator or chain-transfer agent are often employed. The reactor product is a slurry of suspended polymer particles, usually spheres of 30—100 pm in diameter they are separated from the water phase thoroughly washed and dried. Size and internal stmcture of beads, ie, porosity, and dispersant residues affect how the resin performs in appHcations. [Pg.386]

Certain compounds, known as chelating agents (qv), react synergisticaHy with many antioxidants. It is beheved that these compounds improve the functional abiUties of antioxidants by complexing the metal ions that often initiate free-radical formation. Citric acid and ethylenediaminetetraacetic acid [60-00-4] (EDTA), C2QH2gN20g, are the most common chelating agents used (22). [Pg.437]

Reactions involving the peroxodisulfate ion are usually slow at ca 20°C. The peroxodisulfate ion decomposes into free radicals, which are initiators for numerous chain reactions. These radicals act either thermally or by electron transfer with transition-metal ions or reducing agents (79). [Pg.96]

Thermal decomposition of hydroxyalkyl hydroperoxyalkyl peroxides produces mixtures of starting carbonyl compounds, mono- and dicarboxyHc acids, cycHc diperoxides, carbon dioxide, and water. One specific hydroxyalkyl hydroperoxyalkyl peroxide from cyclohexanone (2, X = OH, Y = OOH) is a soHd that is produced commercially as a free-radical initiator and bleaching agent (see Table 5). On controlled decomposition, it forms 1,12-dodecanedioic acid (150). [Pg.116]

Halogen Displacement. Poly(phenylene oxide)s can also be prepared from 4-halo-2,6-disubstituted phenols by displacement of the halogen to form the ether linkage (48). A trace of an oxidizing agent or free radical initiates the displacement reaction. With 4-bromo-2,6-dimethylphenol, the reaction can be represented as in equation 10 ... [Pg.329]

Acylation. Aliphatic amine oxides react with acylating agents such as acetic anhydride and acetyl chloride to form either A[,A/-diaLkylamides and aldehyde (34), the Polonovski reaction, or an ester, depending upon the polarity of the solvent used (35,36). Along with a polar mechanism (37), a metal-complex-induced mechanism involving a free-radical intermediate has been proposed. [Pg.191]


See other pages where Free radicals agents is mentioned: [Pg.353]    [Pg.145]    [Pg.4823]    [Pg.361]    [Pg.353]    [Pg.145]    [Pg.4823]    [Pg.361]    [Pg.13]    [Pg.13]    [Pg.212]    [Pg.301]    [Pg.1008]    [Pg.318]    [Pg.58]    [Pg.150]    [Pg.154]    [Pg.278]    [Pg.269]    [Pg.331]    [Pg.532]    [Pg.53]    [Pg.35]    [Pg.276]    [Pg.374]    [Pg.101]    [Pg.135]    [Pg.380]    [Pg.228]    [Pg.42]    [Pg.430]    [Pg.430]    [Pg.497]    [Pg.498]    [Pg.53]   
See also in sourсe #XX -- [ Pg.5 , Pg.168 ]




SEARCH



Free radical polymerization agents

Free radical polymerization chain transfer agents

Free radical trapping agents

Free radicals chain-terminating agents

Free radicals oxidizing agents, reaction with

Free-radical polymerization blowing agent

Other Free-Radical-Producing Agents

Transfer agent free-radical polymerization

© 2024 chempedia.info