Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free energy conditions

Although moulded polycarbonate parts are substantially amorphous, crystallisation will develop in environments which enable the molecules to move into an ordered pattern. Thus a liquid that is capable of dissolving amorphous polymer may provide a solution from which polymer may precipitate out in a crystalline form because of the favourable free energy conditions. [Pg.572]

By assuming local equilibrium of the dissociation reactions, a zero free energy condition results which relates the local chemical potential of the neutral species to the charged species actually present. Thus, local equilibrium of reaction(21) implies the following generalized free energy equality... [Pg.114]

The Wulff theorem can be derived from the equilibrium condition of an isolated system containing a single crystal, i.e. the minimum free energy condition of the system.Under equilibrium at a constant temperature, an infinitesimal change in Helmholtz free energy of the system, dF, is... [Pg.216]

For spontaneous processes at constant temperature and pressure it is the Gibbs free energy G that decreases, while at equilibrium under such conditions dG = 0. [Pg.347]

The central quantity of interest in homogeneous nucleation is the nucleation rate J, which gives the number of droplets nucleated per unit volume per unit time for a given supersaturation. The free energy barrier is the dommant factor in detenuining J J depends on it exponentially. Thus, a small difference in the different model predictions for the barrier can lead to orders of magnitude differences in J. Similarly, experimental measurements of J are sensitive to the purity of the sample and to experimental conditions such as temperature. In modem field theories, J has a general fonu... [Pg.753]

The alternative to direct simulation of two-phase coexistence is the calculation of free energies or chemical potentials together with solution of the themiodynamic coexistence conditions. Thus, we must solve (say) pj (P) = PjjCT ) at constant T. A reasonable approach [173. 174. 175 and 176] is to conduct constant-AT J simulations, measure p by test-particle insertion, and also to note that the simulations give the derivative 3p/3 7 =(F)/A directly. Thus, conducting... [Pg.2269]

Free energy is related to two other energy quantities, the enthalpy (the heat of reaction measured at constant pressure) and the entropy. S. an energy term most simply visualised as a measure of the disorder of the system, the relationship for a reaction taking place under standard conditions being... [Pg.66]

Wood, R.H. Continuum electrostatics in a computational universe with finite cut-off radii and periodic boundary conditions Correction to computed free energies of ionic solvation. J. Chem. Phys. 103 (1995) 6177-6187. [Pg.31]

We assume that the unbinding reaction takes place on a time scale long ( ompared to the relaxation times of all other degrees of freedom of the system, so that the friction coefficient can be considered independent of time. This condition is difficult to satisfy on the time scales achievable in MD simulations. It is, however, the most favorable case for the reconstruction of energy landscapes without the assumption of thermodynamic reversibility, which is central in the majority of established methods for calculating free energies from simulations (McCammon and Harvey, 1987 Elber, 1996) (for applications and discussion of free energy calculation methods see also the chapters by Helms and McCammon, Hermans et al., and Mark et al. in this volume). [Pg.55]

Equilibrium constants for protein-small molecule association usually are easily measured with good accuracy it is normal for standard free energies to be known to within 0.5 kcal/mol. Standard conditions define temperature, pressure and unit concentration of each of the three reacting species. It is to be expected that the standard free energy difference depends on temperature, pressure and solvent composition AA°a also depends on an arbitrary choice of standard unit concentrations. [Pg.130]

As an example, experimental kinetic data on the hydrolysis of amides under basic conditions as well as under acid catalysis were correlated with quantitative data on charge distribution and the resonance effect [13]. Thus, the values on the free energy of activation, AG , for the acid catalyzed hydrolysis of amides could be modeled quite well by Eq. (5)... [Pg.183]

Just as one may wish to specify the temperature in a molecular dynamics simulation, so may be desired to maintain the system at a constant pressure. This enables the behavior of the system to be explored as a function of the pressure, enabling one to study phenomer such as the onset of pressure-induced phase transitions. Many experimental measuremen are made under conditions of constant temperature and pressure, and so simulations in tl isothermal-isobaric ensemble are most directly relevant to experimental data. Certai structural rearrangements may be achieved more easily in an isobaric simulation than i a simulation at constant volume. Constant pressure conditions may also be importai when the number of particles in the system changes (as in some of the test particle methoc for calculating free energies and chemical potentials see Section 8.9). [Pg.401]

Many different approaches have been suggested as possible approaches to this problem, from the 1960s onwards [Verwer and Leusen 1998]. What is obvious from all of these ellorts is that this is an extremely difficult problem. Both thermodynamics and kinetics can be important in determining which crystalline form is obtained under a certain se1 of experimental conditions. Kinetic effects are particularly difficult to take into accouni and so are usually ignored. A proper treatment of the thermodynamic factors would lequire one to deal with the relative free energies of the different possible polymorphs... [Pg.517]

The first term, AG°, is the change in Gibb s free energy under standard-state conditions defined as a temperature of 298 K, all gases with partial pressures of 1 atm, all solids and liquids pure, and all solutes present with 1 M concentrations. The second term, which includes the reaction quotient, Q, accounts for nonstandard-state pressures or concentrations. Eor reaction 6.1 the reaction quotient is... [Pg.137]

Sodium acetate reacts with carbon dioxide in aqueous solution to produce acetic anhydride and sodium bicarbonate (49). Under suitable conditions, the sodium bicarbonate precipitates and can be removed by centrifugal separation. Presumably, the cold water solution can be extracted with an organic solvent, eg, chloroform or ethyl acetate, to furnish acetic anhydride. The half-life of aqueous acetic anhydride at 19°C is said to be no more than 1 h (2) and some other data suggests a 6 min half-life at 20°C (50). The free energy of acetic anhydride hydrolysis is given as —65.7 kJ/mol (—15.7 kcal/mol) (51) in water. In wet chloroform, an extractant for anhydride, the free energy of hydrolysis is strangely much lower, —50.0 kJ/mol (—12.0 kcal/mol) (51). Half-life of anhydride in moist chloroform maybe as much as 120 min. Ethyl acetate, chloroform, isooctane, and / -octane may have promise for extraction of acetic anhydride. Benzene extracts acetic anhydride from acetic acid—water solutions (52). [Pg.78]

Cell Volta.ge a.ndIts Components. The minimum voltage required for electrolysis to begin for a given set of cell conditions, such as an operational temperature of 95°C, is the sum of the cathodic and anodic reversible potentials and is known as the thermodynamic decomposition voltage, is related to the standard free energy change, AG°C, for the overall chemical reaction,... [Pg.484]

Physical Equilibria and Solvent Selection. In order for two separate Hquid phases to exist in equiHbrium, there must be a considerable degree of thermodynamically nonideal behavior. If the Gibbs free energy, G, of a mixture of two solutions exceeds the energies of the initial solutions, mixing does not occur and the system remains in two phases. Eor the binary system containing only components A and B, the condition (22) for the formation of two phases is... [Pg.60]


See other pages where Free energy conditions is mentioned: [Pg.784]    [Pg.318]    [Pg.318]    [Pg.178]    [Pg.3]    [Pg.784]    [Pg.264]    [Pg.400]    [Pg.784]    [Pg.318]    [Pg.318]    [Pg.178]    [Pg.3]    [Pg.784]    [Pg.264]    [Pg.400]    [Pg.16]    [Pg.373]    [Pg.512]    [Pg.597]    [Pg.713]    [Pg.929]    [Pg.2268]    [Pg.2271]    [Pg.2272]    [Pg.66]    [Pg.66]    [Pg.102]    [Pg.11]    [Pg.18]    [Pg.58]    [Pg.130]    [Pg.141]    [Pg.166]    [Pg.170]    [Pg.565]    [Pg.579]    [Pg.642]    [Pg.21]   


SEARCH



Conditional free energy

Free Energy Under Nonstandard Conditions

Free Energy and Nonstandard Conditions

Free energy nonstandard conditions

Free energy standard conditions

Gibbs Free Energy Changes in Laboratory Conditions

Gibbs free energy conditions

Gibbs free energy under nonstandard conditions

The Free Energy Change of a Reaction under Nonstandard Conditions

Zero-free energy conditions

© 2024 chempedia.info