Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourth-Order Coherent Raman Scattering at Buried Interfaces

Fourth-Order Coherent Raman Scattering at Buried Interfaces [Pg.103]

Interfaces between two different media provide a place for conversion of energy and materials. Heterogeneous catalysts and photocatalysts act in vapor or liquid environments. Selective conversion and transport of materials occurs at membranes of biological tissues in water. Electron transport across solid/solid interfaces determines the efficiency of dye-sensitized solar cells or organic electroluminescence devices. There is hence an increasing need to apply molecular science to buried interfaces. [Pg.103]

However, analyses of the interface surrounded by some medium are not easy. When an interface of interest is exposed to a vacuum, electron-based or ion-based methods are available to determine the chemical composition and molecular structure of the top layers. The charged particles with limited penetration range result in a good vertical resolution. Buried interfaces are beyond the range of penetration. Photons, an alternative class of probe particles, have better ability for penetration. When the linear response to the incident electric field is analyzed, the vertical resolution is limited to the order of the wavelength, which is greater than the thickness of the top layers. [Pg.103]

Sum-frequency (SF) spectroscopy [1] has been used to achive vertical resolutions much better than the wavelength. Sum-frequency light is generated at an interface irradiated with infrared (IR) and visible light. The probability of sum-frequency generation is governed by a second-order susceptibility to be zero in any medium [Pg.103]

Raman excitation. and I2s are the high-frequency and low-frequency components of the pump light pulse. A probe pulse of frequency 12 interacts with the coherence to present the optical response of the fundamental frequency 12 + C0fsl2. (c) Fourth-order coherent Raman scattering, the optical response of the second harmonic frequency 212 + co 2I2 is modulated by the vibrational coherence. [Pg.104]


Successful applications of fourth-order coherent Raman scattering are presented. Interface-selective detection of Raman-active vibrations is now definitely possible at buried interfaces. It can be recognized as a Raman spectroscopy with interface selectivity. Vibrational sum-frequency spectroscopy provides an interface-selective IR spectroscopy in which the vibrational coherence is created in the IR resonant transition. The two interface-selective methods are complementary, as has been experienced with Raman and IR spectroscopy in the bulk. [Pg.113]


See other pages where Fourth-Order Coherent Raman Scattering at Buried Interfaces is mentioned: [Pg.110]    [Pg.110]    [Pg.104]   


SEARCH



Buried

Burying

Coherent Raman scattering

Coherent scatter

Fourth buried interfaces

Fourth-order coherent Raman

Fourth-order coherent Raman scattering

Interface fourth-order coherent Raman

Interface scattering

Raman scattering

© 2024 chempedia.info