Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier-transform infrared spectroscopy requirements

Time-resolved Fourier transform infrared spectroscopy has been used surprisingly little considering the nuadter of commercial spectrometers that are currently in laboratories and the applicability of this technique to the difficult tine regime from a few is to a few hundred is. One problem with time-resolved Fourier transform spectroscopy and possibly one reason that it has not been more widely used is the stringent reproducibility requirement of the repetitive event in order to avoid artifacts in the spectra( ). When changes occur in the eiaissirr source over the course of a... [Pg.466]

In recent years, infrared spectroscopy has been enhanced by the possibility of applying Fourier transform techniques to it. This improved spectroscopic technique, known as Fourier transform infrared spectroscopy (FTIR), is of much greater sensitivity than conventional dispersive IR spectroscopy (Skoog West, 1980). Moreover, use of the Fourier transform technique enables spectra to be recorded extremely rapidly, with scan times of only 0-2 s. Thus it is possible to record spectra of AB cements as they set. By comparison, conventional dispersive IR spectroscopy requires long scan times for each spectrum, and hence is essentially restricted to examining fully-set cements. [Pg.364]

The application of Fourier-transform infrared spectroscopy of polymers has been reviewed. Since the requirements for activity of a vibration for causing absorption in the infrared and for causing... [Pg.78]

Fourier transform infrared spectroscopy (FT—IR) has been developing into a viable analytical technique (56). The use of an interferometer requires a computer which increases the cost of the system. The ability of IR to differentiate geometrical isomers is still an advantage of the system, and computer techniques such as signal averaging and background subtraction, improve capabilities for certain analyses. [Pg.286]

The transform from the interferogram to the spectrum is carried out by the dedicated minicomputer on the instrument. The theory of Fourier-transform infrared spectroscopy has been treated, and is readily available in the literature.21,22,166 Consequently, the advantages of F.t.-i.r. dispersive spectroscopy will only be outlined in a qualitative sense (i) The Fellgett or multiplex advantage arises from the fact that the F.t.-i.r. spectrometer examines the entire spectrum in the same period of time as that required... [Pg.57]

Fourier transform infrared spectroscopy FT-IR. The measurement of individual degradation products with FT-IR is very simple, quick and precise. A reference sample spectrum of new oil is required to subtract electronically from the oil sample spectrum. The spectra of the fresh oil and the used oil sample are obtained individually in the same cell. The results - both spectra and the "differential" spectrum are stored in the computer in absorbance format, a form that varies linearly with concentration. [Pg.232]

Conclusions from the Case Study. Exercises such as these are quite common in the characterization of complex solids and do indeed require the combined expertise of a group of specialists. The set of techniques required varies from case to case, but the more or less standard combination of two or more complementary techniques as part of the arsenal is very useful. In retrospect, we were able to identify the techniques which were crucial to solving this problem XPS/TEM, LEIS, XRD and EXAFS. A number of others (Magic-Angle-Spinning NMR (MAS-NMR), Raman Spectroscopy and FTIR (Fourier Transform Infrared Spectroscopy) were applied, but did not add significantly to the final result. The study of various samples which were synthesized in different ways and which showed different catalytic activities did prove relevant, but is not described in detail here. [Pg.194]

As described in more detail in Section 13.3.2, the main analytical techniques that are employed for metabonomic studies are based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The latter technique requires a preseparation of the metabolic components using either gas chromatography (GC) after chemical derivatization or liquid chromatography (LC), with the newer method of ultra-high-pressure LC (UPLC) being used increasingly. The use of capillary electrophoresis (CE) coupled to MS has also shown promise. Other more specialized techniques such as Fourier transform infrared spectroscopy and arrayed electrochemical detection have been used in some cases. [Pg.1505]

Additionally, a variety of analytical equipment and techniques that allow the examination of small- (and micro-) scale microbial cultures and their products have become available. Examples include near infrared and Fourier transform infrared spectroscopy, which offer the ability for in situ detection of specific compounds in fermentation broth [22]. However, sensitivity and the required sample volumes pose serious obstacles that still have to be overcome. Another alternative is offered by sensitive pyrolysis mass spectroscopy, which was demonstrated to be suitable for quantitative analysis of antibiotics in 5-pl aUquots of fermentation broth when combined with multivariate calibration and artificial neural networks [91]. The authors concluded that a throughput of about 12,000 isolates per month could be expected. Furthermore, standard chromatographic methods such as gas chromatography or high-performance liquid chromatography, possibly in combination with mass spectroscopy (MS) for detection, can provide simultaneous quantitative detection of many metabolic products. [Pg.152]

Fourier transform infrared spectroscopy (FTIR) had its origins in the interferometer developed by Michelson in 1880 and experiments by astrophysicists some seventy years later. A commercial FTIR instrument required development of the laser (1960, by Theodore H. Maiman [1927- ], Hughes Aircraft), refined optics, and computer hardware and software. The Fourier transform takes data collected in time domain and converts them to frequency domain, the normal infrared (IR) spectrum. FTIR provided vasdy improved signal-to-noise ratios allowing routine analyses of microgram samples. [Pg.233]

Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy have also been used for analyses of complexes. Upon complexation of the guest, shifts or changes in the spectrum occur. There are interferences in the spectra from the CD, and some of the changes are very subtle, requiring careful interpretation of... [Pg.17]


See other pages where Fourier-transform infrared spectroscopy requirements is mentioned: [Pg.123]    [Pg.108]    [Pg.89]    [Pg.55]    [Pg.596]    [Pg.230]    [Pg.10]    [Pg.89]    [Pg.366]    [Pg.19]    [Pg.14]    [Pg.284]    [Pg.49]    [Pg.179]    [Pg.291]    [Pg.245]    [Pg.6471]    [Pg.1409]    [Pg.95]    [Pg.174]    [Pg.182]    [Pg.73]    [Pg.7]    [Pg.1371]    [Pg.6470]    [Pg.240]    [Pg.239]    [Pg.388]    [Pg.617]    [Pg.340]    [Pg.39]    [Pg.334]    [Pg.89]    [Pg.19]    [Pg.51]    [Pg.1735]    [Pg.1736]    [Pg.1916]   
See also in sourсe #XX -- [ Pg.517 ]




SEARCH



Fourier spectroscopy

Fourier transform infrared

Fourier transform spectroscopy

Fourier transform spectroscopy infrared

Infrared spectroscopy, fourier

Transformed infrared spectroscopy

© 2024 chempedia.info