Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier-Laplace transform, response function

A wave may be viewed as a unit of the response of the system to applied input or disturbances. These responses could be in terms of physical deflections, pressure, velocity, vorticity, temperature etc., those physical properties relevant to the dynamics, showing up in general, as function of space and time. Any arbitrary function of space and time can be written in terms of Fourier-Laplace transform as given by,... [Pg.10]

Considerable effort has gone into solving the difficult problem of deconvolution and curve fitting to a theoretical decay that is often a sum of exponentials. Many methods have been examined (O Connor et al., 1979) methods of least squares, moments, Fourier transforms, Laplace transforms, phase-plane plot, modulating functions, and more recently maximum entropy. The most widely used method is based on nonlinear least squares. The basic principle of this method is to minimize a quantity that expresses the mismatch between data and fitted function. This quantity /2 is defined as the weighted sum of the squares of the deviations of the experimental response R(ti) from the calculated ones Rc(ti) ... [Pg.181]

The traditional way is to measure the impedance curve, Z(co), point-after-point, i.e., by measuring the response to each individual sinusoidal perturbation with a frequency, to. Recently, nonconventional approaches to measure the impedance function, Z(a>), have been developed based on the simultaneous imposition of a set of various sinusoidal harmonics, or noise, or a small-amplitude potential step etc, with subsequent Fourier- and Laplace transform data analysis. The self-consistency of the measured spectra is tested with the use of the Kramers-Kronig transformations [iii, iv] whose violation testifies in favor of a non-steady state character of the studied system (e.g., in corrosion). An alternative development is in the area of impedance spectroscopy for nonstationary systems in which the properties of the system change with time. [Pg.189]

Thus, it becomes apparent the output and the impulse response are one-sided in the time domain and this property can be exploited in such studies. Solving linear system problems by Fourier transform is a convenient method. Unfortunately, there are many instances of input/ output functions for which the Fourier transform does not exist. This necessitates developing a general transform procedure that would apply to a wider class of functions than the Fourier transform does. This is the subject area of one-sided Laplace transform that is being discussed here as well. The idea used here is to multiply the function by an exponentially convergent factor and then using Fourier transform technique on this altered function. For causal functions that are zero for t < 0, an appropriate factor turns out to be where a > 0. This is how Laplace transform is constructed and is discussed. However, there is another reason for which we use another variant of Laplace transform, namely the bi-lateral Laplace transform. [Pg.67]

Up to this point we have described methods in which impedance is measured in terms of a transfer function of the form given by Eq. (56). For frequency domain methods, the transfer function is determined as the ratio of frequency domain voltage and current, and for time domain methods as the ratio of the Fourier or Laplace transforms of the time-dependent variables. We will now describe methods by which the transfer function can be determined from the power spectra of the excitation and response. [Pg.165]

The function F(ico)=F f(t) is the image function of f(t). After rearrangement of Eq. (6A.2), using the laws of the Laplace-Fourier transformation (cf. Appendix 4E), the measurable surface tension response Ay(t) of the system to the area disturbance Ain A(t) is obtained. [Pg.537]

From the definitions given in Section 4.4.2, it is apparent that the interfacial impedance can be calculated from the perturbation and response in the time domain, in which the excitation can be any arbitrary function of time. In principle, any one of several linear integral transforms can be used (Macdonald and McKubre [1981]) to convert from the time domain into the frequency domain, but the two most commonly used are the Laplace and Fourier transforms ... [Pg.154]


See other pages where Fourier-Laplace transform, response function is mentioned: [Pg.163]    [Pg.509]    [Pg.10]    [Pg.94]    [Pg.318]    [Pg.3]    [Pg.432]    [Pg.596]    [Pg.129]    [Pg.177]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Fourier transform function

Fourier transform response function

Fourier-Laplace transform, response

Function Fourier

Laplace

Laplace transform

Laplace transform function

Laplace transforms

Response functions

Response transformation

Transformation function

Transforms Laplace transform

© 2024 chempedia.info