Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Forster transfer process

The quenching of chemically excited triplet acetone by biologically important compounds such as indoles, tyrosine derivatives, quinones, riboflavin, and xanthene dyes has been studied. Quenching occurs by electron and Forster transfer processes. Triplet-state parameters have been presented for the... [Pg.38]

In this chapter we shall first outline the basic concepts of the various mechanisms for energy redistribution, followed by a very brief overview of collisional intennoleciilar energy transfer in chemical reaction systems. The main part of this chapter deals with true intramolecular energy transfer in polyatomic molecules, which is a topic of particular current importance. Stress is placed on basic ideas and concepts. It is not the aim of this chapter to review in detail the vast literature on this topic we refer to some of the key reviews and books [U, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, and 32] and the literature cited therein. These cover a variety of aspects of tire topic and fiirther, more detailed references will be given tliroiighoiit this review. We should mention here the energy transfer processes, which are of fiindamental importance but are beyond the scope of this review, such as electronic energy transfer by mechanisms of the Forster type [33, 34] and related processes. [Pg.1046]

Forster (1959) classifies the qualitative features based on which one can distinguish the various modes of energy transfer. Mainly, only collisional transfer depends on solvent viscosity (vide infra), whereas complexing between the donor and acceptor changes the absorption spectrum. On the other hand, the sensitizer lifetime decreases for the long-range resonant transfer process, whereas it should be unchanged for the trivial process. [Pg.84]

Developed into a power series in R 1, where R is the intermolecular separation, H exhibits the dipole-dipole, dipole-quadrupole terms in increasing order. When nonvanishing, the dipole-dipole term is the most important, leading to the Forster process. When the dipole transition is forbidden, higher-order transitions come into play (Dexter, 1953). For the Forster process, H is well known, but 0. and 0, are still not known accurately enough to make an a priori calculation with Eq. (4.2). Instead, Forster (1947) makes a simplification based on the relative slowness of the transfer process. Under this condition, energy is transferred between molecules that are thermally equilibriated. The transfer rate then contains the same combination of Franck-Condon factors and vibrational distribution as are involved in the vibrionic transitions for the emission of the donor and the adsorptions of the acceptor. Forster (1947) thus obtains... [Pg.85]

Another major energy transfer process, the so-called Forster transfer mechanism is based on a dipole-dipole interaction between the host excited state and the guest ground state (Figure 4.2) [24], It does not include the transfer of electrons and may occur over significantly larger distances. The rate constant of the Forster energy transfer is inversely proportional to the sixth power of the distance R between the molecules ... [Pg.417]

Energy-transfer processes in which free photons exist as intermediates are sometimes referred to as trivial transfer mechanism. This term is misleading in the sense that such processes (e.g., in combination with internal reflection) can cause very complex and interesting phenomena [61, 65-67]. Radiationless energy-transfer processes have been studied extensively since the pioneering work of Forster [68, 69] and Dexter [70] (see, e.g., [40, 67, 71-73]). Here, we concentrate on the description of one-photon events, specifically with respect to radiationless energy-transfer processes. [Pg.37]

Baldo et al. [ 164] used the platinum complex of 2,3,7,8,12,13,17,18-octaethyl-21 //,23//-porphine (PtOEP, 66) as efficient phosphorescent material. This complex absorbs at 530 nm and exhibits weak fluorescence at 580 nm but strong phosphorescence from the triplet state at 650 nm. Triplet transfer from a host like Alq3 was assumed to follow the Dexter mechanism. Dexter-type excitation transfer is a short-range process involving the exchange of electrons. In contrast to Forster transfer, triplet exciton transfer is allowed. [Pg.132]

More sophisticated designs involved semiconductor quantum dots with fluorescent protein receptors immobilized on the surface [146], The binding site of the protein receptor is occupied with an efficient fluorophore. On excitation a series of FRET (Forster resonant energy transfer) processes takes place excitation energy is transferred from the core of the quantum dot to the fluorescent protein and subsequently to the fluorophore. On substrate binding only one FRET step takes place and luminescence of the receptor is observed [146], In the simplest sensor architecture the protein contains bound quencher. Upon interaction with analyte the quencher is liberated and luminescence of the quantum dot is observed (Figure 16.25c). [Pg.285]

The energy transfer process in the antenna system is generally considered to take place according to a resonance transfer mechanism first proposed by Forster (see below). The antenna system increases the effective cross-section of photon absorption by increasing the number of pigments associated... [Pg.3851]


See other pages where Forster transfer process is mentioned: [Pg.207]    [Pg.207]    [Pg.207]    [Pg.207]    [Pg.167]    [Pg.183]    [Pg.22]    [Pg.24]    [Pg.53]    [Pg.511]    [Pg.49]    [Pg.84]    [Pg.85]    [Pg.525]    [Pg.526]    [Pg.332]    [Pg.416]    [Pg.417]    [Pg.429]    [Pg.102]    [Pg.88]    [Pg.158]    [Pg.553]    [Pg.67]    [Pg.196]    [Pg.103]    [Pg.122]    [Pg.162]    [Pg.229]    [Pg.414]    [Pg.23]    [Pg.46]    [Pg.240]    [Pg.197]    [Pg.268]    [Pg.81]    [Pg.79]    [Pg.428]    [Pg.3861]   
See also in sourсe #XX -- [ Pg.207 ]




SEARCH



Forster

Forster transfer

© 2024 chempedia.info