Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formals, cyclic oxidation

Cyclic chalcogen imides in which sulfur is in the formal -f2 oxidation state (or lower) can, in the case of sulfur, act as a source of binary S-N... [Pg.3]

Removal of two electrons from the formal cyclic 87r-electron structures serves to produce potential Hiickel 4n + 2 aromatic systems. The loss of one electron to form a radical cation was referred to in Section 2.26.2.1, and removal of a second electron by electrochemical oxidation, leading to dicationic structures, has also been achieved for a wide range of unsaturated compounds with heteroatoms in the 1,4 positions (70ZC147, 73JA2375). The oxidations are discussed further in Section 2.26.3.1.5, where tabulated data are presented. An interesting feature is the stability of certain salts of the dications, some of which have been isolated. [Pg.960]

No simple pteridine 1- or 3-oxides are yet known. If the AT-atom of an amide function is formally oxidized, tautomerism favours the cyclic hydroxamic acid structure, as found for 3-hydroxypteridin-4-one (55JA3927), 1-hydroxylumazine (64JOC408) and 2,4-diamino-8-hydroxypteridin-7-ones (75JOC2332). [Pg.282]

It will be convenient to describe first the binary. sulfur nitrides SjN,. and then the related cationic and anionic species, S,Nv. The sulfur imides and other cyclic S-N compounds will then be discus.sed and this will be followed by sections on S-N-halogen and S-N-O compounds. Several compounds which feature i.solated S<—N, S-N, S = N and S=N bonds have already been mentioned in the. section on SF4 e.g. F4S NC,H, F5S-NF2. F2S = NCF3, and FiS=N (p. 687). Flowever. many SN compounds do not lend themselves to simple bond diagrams, - and formal oxidation states are often unhelpful or even misleading. [Pg.722]

FIGURE 2-3 Concentration distribution of the oxidized and reduced forms of the redox couple at different times during a cyclic voltammetric experiment corresponding to the initial potential (a), to the formal potential of the couple during the forward and reversed scans (b, d), and to the achievement of a zero reactant surface concentration (c). [Pg.30]

Similar considerations apply to the thiirene oxide system (18), since in this case too the sulfur s 3d-orbitals have the potential of interacting with the 2p-orbitals of both the adjacent carbon and oxygen atoms. Such an interaction should facilitate some kind of conjugation of the carbon-carbon double-bond -electrons with the formally unoccupied 3d-orbitals, which in turn would give rise to Hiickel-type stabilization associated with cyclic array of 4n + 2 (n = 0) 7t-electrons. [Pg.390]

A high yield synthesis involving formal oxidation of a sulphoxide to a sulphoximine has been reported183 using O-mesitylenesulphonyl hydroxylamine (NH2OMes) (equation 67). The reaction is successful for a wide range of sulphoxides including dialkyl, diaryl and cyclic species. [Pg.989]

If the film is nonconductive, the ion must diffuse to the electrode surface before it can be oxidized or reduced, or electrons must diffuse (hop) through the film by self-exchange, as in regular ionomer-modified electrodes.9 Cyclic voltammograms have the characteristic shape for diffusion control, and peak currents are proportional to the square root of the scan speed, as seen for species in solution. This is illustrated in Fig. 21 (A) for [Fe(CN)6]3 /4 in polypyrrole with a pyridinium substituent at the 1-position.243 This N-substituted polypyrrole does not become conductive until potentials significantly above the formal potential of the [Fe(CN)6]3"/4 couple. In contrast, a similar polymer with a pyridinium substituent at the 3-position is conductive at this potential. The polymer can therefore mediate electron transport to and from the immobilized ions, and their voltammetry becomes characteristic of thin-layer electrochemistry [Fig. 21(B)], with sharp symmetrical peaks that increase linearly with increasing scan speed. [Pg.589]

A number of metal complexes with disulfurmonoxide as a ligand have been prepared either by oxidation of precursor complexes containing the 2 hgand or by trapping S2O formally produced in situ from a suitable precursor by heating [52]. Such molecules are cyclic di-, tri-, or tetrasulfane monoxides or dioxides such as the one shown in Scheme 1. [Pg.210]

Diaryl carbazides and thiocarbazides, e.g., 43, can be oxidized at alkaline pH to yield C-hydroxy or C-mercapto formazans (44) (Eq. 8).68,129 The replacement of C-halo formazans is considered to be a better method60 for the preparation of 44. A class of cyclic formazans (45) can be obtained by air oxidation of amidrazones (46) (Eq. 9) 9,73,101,102 jhough this is formally a formazan, there are no reports of its oxidation reactions. In a... [Pg.217]

Thin films of a composite nickel-iron (9 1 Ni/Fe ratio) and iron-free oxyhydroxides were deposited from metal nitrate solutions onto Ni foils by electroprecipitation at constant current density. A comparison of the cyclic voltammetry of such films in 1M KOH at room temperature (see Fig. 6) shows that the incorporation of iron in the lattice shifts the potentials associated formally with the Ni00H/Ni(0H)2 redox processes towards negative potentials, and decreases considerably the onset potential for oxygen evolution. The oxidation peak, as shown in the voltammo-gram, is much larger than the reduction counterpart, providing evidence that within the time scale of the cyclic voltammetry, a fraction of the nickel sites remains in the oxidized state at potentials more negative than the reduction peak. [Pg.268]

Electrochemistry. The redox processes for porphyrazines 21, 25, 28, 29, the heteroleptic Zr (pz/porphyrin) 30 and 31 have been measured by cyclic voltammetry and the formal potentials are given in Table VII. The potentials are compared to the available data for the analogous porphyrin and pc complexes. In general, the electrochemical behavior of the pz sandwiches more closely mirror that observed for the phthalocyanines than the porphyrins. In particular, all of the porphyrazines have at least one ring-based oxidation, attributable to the formation of the bis Jt-radical cation for Lu(III) sandwiches and the formation of the 7T-radical cation for the Zr(IV) and Ce(IV) sandwiches. Additionally, all of the porphyrazines exhibit at least one ring-based reduction. [Pg.496]

The cyclic voltammograms of the metal-dithiolene capped porphyrazines 147-149, 152, and 153 reveal a reversible oxidation couple arising from the peripheral [N2-M-S2] functionality, formally written as M(nyni) (M = Pt, Pd) (29). These oxidations occur at approximately +0.2 V (vs Fc+/Fc) for the Pd(bdt) (148), Pd(dmid) (149), Pt(tdt) (152), and Pt(dmit) (153) capped porphyrazines, respectively (Table XXVII). However, all... [Pg.544]

On the other hand, in cyclic ethers (alkene oxides, oxetans, tetrahydrofuran) and formals the reaction site is a carbon-oxygen bond, the oxygen atom is the most basic point, and, hence, cationic polymerization is possible. The same considerations apply to the polymerization of lactones Cherdron, Ohse and Korte showed that with very pure monomers polyesters of high molecular weight could be obtained with various cationic catalysts and syncatalysts, and proposed a very reasonable mechanism involving acyl fission of the ring [89]. [Pg.135]

C. P. Andrieux, P. Hapiot, J. Pinson, J.-M. Saveant. Determination of Formal Potentials of Chemically Unstable Redox Couples by Second-Harmonic Alternating Current Voltammetry and Cyclic Voltammetry. Application to the Oxidation of Thiophenoxide Ions. J.Am. Chem. Soc. 1993,115, 7783-7788. [Pg.265]

As mentioned, DPV is particularly useful to determine accurately the formal electrode potentials of partially overlapping consecutive electron transfers. For instance, Figure 40 compares the cyclic voltammogram of a species which undergoes two closely spaced one-electron oxidations with the relative differential-pulse voltammogram. As seen in DPV the two processes are well separated. [Pg.112]

It undergoes either two separated reductions or one oxidation, all having features of chemical reversibility in the cyclic voltammetric time scale. Since no detailed studies have been carried out on the underlying electrode mechanism, it is noted that these redox transformations could formally correspond to the sequence V(III)/V(II)/V(I), but, as far as the reduction processes are concerned, it is also likely that they are centred on the polypyridine ligand. [Pg.225]


See other pages where Formals, cyclic oxidation is mentioned: [Pg.173]    [Pg.395]    [Pg.140]    [Pg.211]    [Pg.665]    [Pg.708]    [Pg.875]    [Pg.12]    [Pg.67]    [Pg.129]    [Pg.28]    [Pg.225]    [Pg.242]    [Pg.875]    [Pg.192]    [Pg.193]    [Pg.73]    [Pg.252]    [Pg.262]    [Pg.561]    [Pg.1295]    [Pg.94]    [Pg.542]    [Pg.205]    [Pg.78]    [Pg.138]    [Pg.92]    [Pg.328]    [Pg.830]   
See also in sourсe #XX -- [ Pg.77 , Pg.78 ]




SEARCH



Cyclic oxides

Oxidation cyclic

Oxidation formal

© 2024 chempedia.info